
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LABORATORY MANUAL

Course: Microcontroller Laboratory
Course Code: 4CSL02
Faculty: Smt. Kavitha M.,Assistant Professor

SIDDAGANGA INSTITUTE OF TECHNOLOGY, TUMKUR-3
An Autonomous Institution, Affiliated to VTU, Belagavi & Recognized by AICTE and Accredited by NBA, New Delhi

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 2

MICROCONTROLLER LABORATORY

Lab Hours/ Week : 3 Hours CIE Marks : 50

Sub. Code : 4CSL02 SEE Marks : 50

Credits : 1.5 SEE Duration : 3 Hours

Course Objectives:

1. Exhibit the knowledge of architecture and pin outs of 8051 microcontroller.
2. Analyze and Apply 8051 instruction set to develop assembly language programs for illustrating

different types of operations.
3. Develop the ability to program 8051 microcontroller using embedded C.
4. Exhibit skills of developing embedded C code for I/O port programming and Timer/counter

programming.
5. Interface 8051 to Logic controller, LCD, Seven segment display, Keyboard, DAC, Stepper motor

and Elevator.

Course Outcomes (COs):

CO1: Apply different 8051 microcontroller instructions to develop assembly language code for
illustrating data transfer and arithmetic operations using Keil tool.

CO2: Design and develop assembly language program for 8051 using different branch control
instructions in Keil.

CO3: Apply Embedded C concepts to develop code for 8051 microcontroller using modern tool like Keil.

CO4: Design and develop code for interfacing different modules like Logic controller, Seven segment
display, Keypad, DAC, Elevator with 8051 using embedded C with Keil and Flash Magic tools.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 3

Vision of the Department

To work towards the vision of the institution by building a strong teaching and research environment

that is capable of responding to the challenges of the 21st century.

Mission of the Department

To prepare under graduate, graduate and research students for productive careers in industry, academia

and entrepreneurship through comprehensive educational programs, research in collaboration with

industry & government, incubating innovative ideas, dissemination by scholarly publications and

professional society /co-curricular activities.

Program Outcomes (POs):

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solution
in societal and environmental contexts, and demonstrate the knowledge of, and need for
sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 4

effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

1. Computer based systems development: Ability to apply the basic knowledge of database
systems, computing, operating system, digital circuits, microcontroller, computer organization
and architecture in the design of computer based systems.

2. Software development: Ability to specify, design and develop projects, application softwares
and system softwares by using the knowledge of data structures, analysis and design of algorithm,
programming languages, software engineering practices and open source tools.

3. Computer communications and Internet applications: Ability to design and develop network
protocols and internet applications by incorporating the knowledge of computer networks,
communication protocol engineering, cryptography and network security, distributed and cloud
computing, data mining, big data analytics, ad hoc networks, storage area networks and wireless
sensor networks.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 5

SYLLABUS

PART – A

1. Write an ALP to exchange the block of data of length ‘N’ stored starting at RAM address
9000H and 9100H.

2. Write an ALP to add ‘N’ BCD numbers stored starting at RAM address 2000H. Store the result
in the next consecutive locations.

3. Write an ALP to count the number of odd and even numbers in a block of ‘N’ numbers stored
starting at RAM address 1000H. Store the result in the next consecutive locations.

4. Write an ALP to add two multi-byte numbers stored at RAM address 9000H and 9100H. Store
the multi-byte result at RAM address 9200H.

5. Write an ALP to search for the key element in a block of ‘N’ bytes. If the number is present,
show its position in the RAM location, 1050H. Otherwise, show FFH in 1050H location.
Assume the key element is stored at RAM address 1000H and the data block starts at the RAM
location 1001H.

6. Write an ALP to convert the binary number stored at RAM location 1000H into BCD and store
the result in the next consecutive locations.

7. Write an ALP to compute the GCD and LCM of two 8-bit numbers stored at RAM locations
1000H and 1001H and store the result in the next consecutive locations.

8. Write an ALP to simulate BCD up counter.

9. Write an ALP to arrange the ‘N’ 8-bit numbers stored starting at RAM address 2000H in
ascending order using Bubble Sort technique.

10. Write an ALP to multiply an 8-bit number stored at RAM location 1000H with a 16-bit number
stored at RAM locations 1001H and 1002H. Store the result in the next consecutive locations.

PART – B

1. Write an 8051 C program to design a counter for counting the pulses of an input signal fed
through pin P3.4. Display each count on the logic controller interface. (Use Counter 0 in
mode2. The Count must be specified by the examiner).

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 6

2. Write an 8051 C program to read the status of 8 input bits from the Logic Controller Interface
and display ‘FF’ if it is even parity bits otherwise display 00. Also display number of 1’s in the
input data.

3. Write an 8051 C program to compute x * y using Logic Controller Interface.

4. Write an 8051 C program to display the messages LIFE and HOPE alternately on a 4-digit
seven-segment display Interface.

5. Write an 8051 C program to display the message “dEPt OF CSE” from right-to-left and left-to-
right on a 4-digit seven-segment display Interface.

6. Write an 8051 C program to drive a Stepper motor Interface to rotate the motor by N steps in
clockwise direction and N steps in anti-clockwise direction. Introduce suitable delay between
successive steps.

7. Write an 8051 C program to display the strings on a 2x16 character LCD Interface.

8. Write an 8051 C program to scan a 4 x 4 keypad for key closure and display the code of the
key pressed on LCD.

9. Write an 8051 C program to generate Half Rectified Sine wave, Fully Rectified Sine and sine
waveform using the DAC Interface. (The output of the DAC is to be displayed on the CRO).

10. Write an 8051 C program to drive an elevator interface in the following way: Initially the
elevator should be in the ground floor, with all requests in OFF state. When a request is made
from a floor to any other floor, the elevator should move up or move down to that requested
floor, service the request and stay in that floor waiting for any new request.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 7

USING KEIL µVISION3 IDE

The Keil µVision IDE is a Windows-based software development platform that combines Project

Management, Source Code Editing, Program Debugging, and Flash Programming in a single,

powerful environment.

When you use the Keil µVision, the project development cycle is roughly the same as it is for

any other software development project.

1. Create a project, select the target chip from the device database, and configure the tool

settings.

2. Create source files in C or assembly.

3. Build your application with the project manager.

4. Correct errors in source files.

5. Test the linked application.

µVision3 has two operating modes:

 Build Mode: Allows you to translate all the application files and to generate executable

programs.

 Debug Mode: Provides you with a powerful debugger for testing your application.

In both operating modes you may use the source editor of µVision3 to modify your source code.

The Debug mode adds additional windows and stores an own screen layout.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 8

To launch Keil µVision3 IDE goto Start menu and click on Keil µVision3.

You will get a window as shown below.

Next, Click on Project menu and select New µVision Project option as shown in below figure.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 9

Now, create a new folder and go to that folder.

Give some valid Project file name and click on Save as shown in below figure.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 10

Now select the target chip as Atmel from the device data base.

In Atmel, choose AT89C51ED2 device and click on OK as shown in below figure.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 11

You need not add the Standard 8051 Startup Code to Project Folder. So, click on No as shown

below.

Now, go to File menu and select New option to create a new file.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 12

Now, edit your assembly language program and then click on Save as shown below.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 13

Now, save your file with .asm extension as shown in below figure and see that the file is saved in

your folder.

Now, right click on Source Group1 in the Project Workspace and select Add files to Group

‘Source Group1’ as shown in below figure.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 14

Now, browse your Asm Source file in your folder and click on Add as shown below.

Once the file is added to the Source Group1, go to Project menu and click on Build target.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 15

If there are no errors in your Source program then Build target is successful. If any errors, then

go to the source program and debug the errors and again Build target.

Now, go to Debug menu and click on Start/Stop Debug Session to start the debug session.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 16

A dialog box appears indicating the code size limit in this open source IDE. Just click OK.

Now, you are in execution mode. You can view several windows in this mode such as Memory

Window to see the data in internal or external RAM memory, Disassembly window to see the

ROM address of each instruction and machine code generated for each instruction etc.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 17

Now, to execute your program step by step, go to Debug menu and click on Step option as

shown in below figure. For whole program execution, click on Run option in Debug menu.

You can view the result of your program execution in appropriate window based on where you

are storing the result. i.e., either in register or in memory. To view the result in memory, give

i:00 (i stands for internal RAM) in the text box provided in the memory window as shown in

below figure. To view external RAM, give x:00 in the memory window. You can edit the

required memory locations.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 18

If any window is not appearing then go to View menu and select required window in it. Below

figure shows the selection of Disassembly Window.

The Disassembly Window shows the Code memory with each instruction address, the machine

code generated for each instruction and also the instructions.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 19

USING FLASH MAGIC TOOL

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 20

NXP Semiconductors produce a range of Microcontrollers that feature both on-chip Flash

memory and the ability to be reprogrammed using In-System Programming technology.

Flash Magic is Windows software from the Embedded Systems Academy that allows easy access

to all the ISP features provided by the devices.

The 8051 Microcontroller board is interfaced with All-in-one I/O interface board for working

with several I/O interfacing components like Logic controller, Seven segment display, keyboard,

stepper motor, elevator, LCD, DAC etc.

Flash Magic tool is used to dump the Hex file to the ROM of 8051 microcontroller. Before using

this tool, the Hex file is to be generated using Keil IDE.

The following steps should be followed to generate the Hex file:

First, create a new file and edit your program and save it with .c extension in your folder as

shown in below figure.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 21

Now, right click on Source Group1 in the Project Workspace and select Add files to Group

‘Source Group1’ as shown in below figure.

Now, go to Flash menu and click on Configure Flash Tools option as shown in below figure.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 22

Now, click on Device option and then NXP (founded by Philips) to select the device.

Next, select P89V51RD2 device.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 23

Next, click on Target option and give the Xtal frequency as 11.059 MHz as shown in below
figure.

Next, click on Output option and select Create Hex File. If you want to give new name to the

executable file then you can provide it in the textbox of Name of Executable and finally click on

OK to complete configuration.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 24

Now, go to Project menu and click on Build Target. If there are any errors, then go to the source

file and debug it otherwise, target will not be created and the Hex file will not be generated.

If Build Target is successful then you can see the message creating hex file from “P1” in the

output window as shown in below figure. The Hex file will be created in the current working

folder.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 25

The Hex File generated is dumped into the ROM of actual 8051 Microcontroller using Flash

Magic Tool. The following steps are to be followed:

To launch Flash Magic, go to Start menu and click on Flash Magic. The following window

appears.

Now, click on Select to choose the device 89V51RD2 from the Device Database.

Next step is to choose correct COM port number. To do this, first find the COM port number to

be used.

Right click on My Computer icon and go to Properties ->Hardware -> Device Manager

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 26

The following window appears. Click on Ports to find the USB to UART bridge COM port

number.

Now, select this COM port number from the drop down list as shown in below figure:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 27

Next step is to browse the Hex file by clicking on Browse and specify its path where Hex file is

created. Then click on Erase all Flash option. Select 9600 Baud rate.

Finally, click on Start to dump the Hex file selected to the ROM of 8051 Microcontroller. Once

the process is completed, it shows finished in the progress bar.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 28

PRACTICE PROGRAMS

Write an 8051 Assembly Language program for the following:

1. Put the number 34H in registers R5, R6 and R7.

Ans:

2. Put the number 8DH in RAM locations 30H and 31H.

Ans:

3. Copy the data at internal RAM location 7FH to the registers R0 and R3.

Ans:

4. Exchange the contents of the registers R0 and R1.

Ans:

5. Rotate the bytes in registers R0 to R3. i.e., copy the data in R0 to R1, R1 to R2, R2 to R3,

and R3 to R0.

Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 29

6. Swap the nibbles of the register R0.

Ans:

7. Copy the data in external RAM locations 0A00H and 0A01H to the registers R0 and R1

respectively.

Ans:

8. Copy the byte at internal RAM address 4AH to external RAM address 0ABCH.

Ans:

9. Copy the data in register R5 to external RAM address 032FH.

Ans:

10. Store DPTR in external RAM locations 0123H (DPL) and 02BCH (DPH).

(RAM address of DPL is 82H and DPH is 83H)

Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 30

11. Clear bit3 of RAM location 22H without affecting any other bits. (Assume 22H contains

the data FFH)

Ans:

12. Set bit 5 of register R2 without affecting any other bits. (Assume R2 contains the data

57H)

Ans:

13. Complement the contents of register R4.

Ans:

14. Store the most significant nibble of A in both the nibbles of R5. (Assume A = A4H)

Ans:

15. Find a number that when XORed to the A register, results in the number 3FH in A.

Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 31

16. Assume register A contains 34H and register R0 contains 52H. Add the contents of

register A and R0 and store the result in A.

Ans:

17. Make register bank3 active and store the data C6H in register R4 of bank3.

Ans:

18. Add the number 84H to RAM locations 17H and 18H. (Assume 17H contains 22H and

18H contains 33H)

Ans:

19. Add the byte in external RAM location 02CDH with internal RAM location 19H and

store the result in internal RAM location 25H. (Assume 02CDH contains 65H and 19H

contains 3FH)

Ans:

20. Subtract the contents of register R1 from R0 and put the result in R7.

Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 32

21. Subtract the contents of register R2 from the number F3H and put the result in external

RAM location 028BH.

Ans:

22. Subtract the contents of RAM location 13H from RAM location 2BH and put the result in

RAM location 3CH.

Ans:

23. Decrement the contents of external RAM locations 0123H and 01CDH.

Ans:

24. Multiply the data in A and B registers and put the result in R0 (LS byte) and R1 (MS

byte).

Ans:

25. Multiply the data in RAM location 22H by the data in RAM location 15H and put the

result in RAM locations 19H (LS byte) and 1AH (MS byte).

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 33

Ans:

26. Square the contents of R5 and put the result in R0 (LS byte) and R1 (MS byte).

Ans:

27. Divide the data in RAM location 3EH by the number 12H and put the quotient in R4 and

the remainder in R5.

Ans:

28. Divide the number in RAM location 15H by the number in RAM location 16H and put

the result in external RAM location 034AH (Quotient) and 034BH (Remainder).

Ans:

29. Put the number 85H in RAM locations 30H to 39H.

Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 34

30. Copy the data in internal RAM locations 12H to 15H to internal RAM locations 20H to

23H.

Ans:

31. Transfer a block of data of length 5 from 9000H to 9100H.

Ans:

32. Copy program bytes from 0000H-0009H to the internal RAM locations 20H-29H.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 35

Ans:

33. Move bit4 of RAM location 30H to bit2 of B.

Ans:

34. Add the unsigned numbers found in internal RAM locations 25H, 26H, and 27H together

and put the result in RAM locations 30H (LS byte) and 31H (MS byte).

Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 36

35. Check whether content of R7 is less than 75H. If yes, then set bit 30H. Otherwise reset bit

30H.

Ans:

36. Find the square root of a number stored in R0 register.

Ans:

37. Count the number of equal bytes between memory blocks 10H-19H and 30H-39H.

Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 37

38. Transfer the numbers in the location 10H-14H that are divisible by3 to the location

starting at address 20H.

Ans:

39. Check whether the character stored in memory location 10H is in the range 30H-39H. If

yes, then store the data 10H at location 11H. Otherwise, store 05H at location 11H.

Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 38

40. Count the number of times the data 25H is present in the location 11H-1AH. Store the

count in location 1BH.

Ans:

Write an 8051 Embedded C program for the following:

1. Send 00H and FFH to port P1. Introduce some delay after each value.
Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 39

2. Toggle bits of P1 continuously forever with some delay.
Ans:

3. Send values 00H-FFH to port P1.
Ans:

4. Send the Hex values for ASCII characters 0, 1, 2, 3, 4, 5, A, B, C and D to port P1.
Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 40

5. Send values - 4 to +4 to port P1.
Ans:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 41

PART – A

PROGRAM - 1: Write an ALP to exchange the block of data of length ‘N’ stored starting

at RAM address 9000H and 9100H.

Description: This program exchanges two blocks of data where each block consists of 5 bytes of

data. Below figure shows sample five bytes of data stored in each block before and after

execution.

Before Execution After Execution

9000H 10H 9100H 60H 9000H 60H 9100H 10H

9001H 20H 9101H 70H 9001H 70H 9101H 20H

9002H 30H 9102H 80H 9002H 80H 9102H 30H

9003H 40H 9103H 90H 9003H 90H 9103H 40H

9004H 50H 9104H A0H 9004H A0H 9104H 50H

Program:

; TO EXCHANGE BLOCK OF DATA
MOV DPTR,#9000H
MOV R0,#5 ;block length

AGAIN:MOVX A,@DPTR
MOV R1,A ; Save the data in R1 register

INC DPH
MOVX A,@DPTR

DEC DPH
MOVX @DPTR,A

MOV A,R1
INC DPH
MOVX @DPTR,A

DEC DPH
INC DPL

DJNZ R0,AGAIN
HERE:SJMP HERE

END

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 42

SAMPLE OUTPUT:

Before Execution:

The following five bytes of data are stored starting at external RAM address 9000H:

The following five bytes of data are stored starting at external RAM address 9100H:

After Execution:

The following five bytes of data are stored starting at external RAM address 9000H:

The following five bytes of data are stored starting at external RAM address 9100H:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 43

PROGRAM – 2: Write an ALP to add ‘N’ BCD numbers stored starting at RAM address

2000H. Store the result in the next consecutive locations.

Description: An 8-bit BCD number can contain two 4 bit BCD digits each ranging from 0 – 9.

For example, 25 is a valid BCD number with two BCD digits 2 and 5 i.e., 0010BCD 0101BCD.This

program is to add N BCD numbers which are stored in external RAM. Here, we have considered

11 BCD numbers. Each time the addition operation is performed, we use DA A (Decimal Adjust

Accumulator) instruction to adjust the result to correct BCD form. The higher byte result is held

in R1 and the lower byte result is held in R2. These register contents are stored in consecutive

memory locations after the 11 bytes of input data.

Program:

; TO ADD N BCD NUMBERS

MOV DPTR,#2000H
MOV R0,#11 ;Total number of BCD numbers
MOV R1,#00 ;To hold higher byte of the result
MOV R2,#00 ;To hold the lower byte of the result

AGAIN: MOVX A,@DPTR
ADD A,R2
DA A
MOV R2,A
JNC NEXT

CLR A
MOV A,R1
ADD A,#01
DA A
MOV R1,A

NEXT: INC DPTR
DJNZ R0,AGAIN

MOV A,R1
MOVX @DPTR,A

INC DPTR
MOV A,R2
MOVX @DPTR,A

HERE: SJMP HERE
END

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 44

SAMPLE OUTPUT:

Before Execution:

The following eleven bytes of BCD data are stored starting at external RAM address 2000H:

After Execution:

The resultant sum 588 is stored in next consecutive two memory locations after eleven bytes of
input BCD data, i.e., at locations 200BH and 200CH respectively.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 45

PROGRAM – 3: Write an ALP to count the number of odd and even numbers in a block of

‘N’ numbers stored starting at RAM address 1000H. Store the result in the next

consecutive locations.

Description: This program is to count the number of odd numbers and even numbers in a block

of data containing N numbers. Here, we have considered 5 bytes of data. We have used two

registers, R0 and R1 as counters to maintain the count of odd and even numbers respectively.

Since the LSB (Least Significant Bit) of all even numbers is always 0 and for all odd numbers it

is always 1, we have used RRC (Rotate Right through Carry) instruction to move the LSB to the

carry flag. Then, we test the carry flag status to decide whether the input byte is odd or even. The

counter values are stored in external RAM in next consecutive memory locations after the input

bytes.

Program:
;TO COUNT ODD AND EVEN NUMBERS IN AN ARRAY

MOV R0,#00H ; Odd number counter
MOV R1,#00H ; Even number counter
MOV R2,#5 ; No. of bytes in the block
MOV DPTR,#1000H

AGAIN: MOVX A,@DPTR
RRC A
JNC EVEN
INC R0
SJMP NEXT

EVEN: INC R1
NEXT: INC DPTR

DJNZ R2,AGAIN

MOV A,R0
MOVX @DPTR,A ;store odd no. count in memory

INC DPTR
MOV A,R1
MOVX @DPTR,A ;store even no. count in memory

HERE: SJMP HERE
END

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 46

SAMPLE OUTPUT:

Before Execution:

The following five bytes of data are stored starting at external RAM address 1000H:

After Execution:

The odd numbers and even numbers count are stored in next consecutive two memory locations
after five bytes of input data i.e., at 1005H and 1006H respectively.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 47

PROGRAM – 4: Write an ALP to add two multi-byte numbers stored at RAM address

9000H and 9100H. Store the multi-byte result at RAM address 9200H.

Description: This program is to add two multi-byte numbers which are stored in external RAM.

Here, we have considered two 5-byte numbers. Starting from the least significant bytes in both

the numbers, we perform addition byte by byte and add the next consecutive bytes along with the

carry using ADDC (ADD with Carry) instruction. The two 5-byte numbers and the resultant

number are stored in Little Endian format in the memory.

Example: 3475514312H

+9247351454H

C6BC865766H

Program:

; TO ADD TWO MULTIBYTE NUMBERS

MOV DPL,#00H
MOV R1,#5 ; No. of bytes in the input number
MOV R2,#90H
MOV R3,#91H

MOV R4,#92H
CLR C

NXT_BYTE: MOV DPH,R2
MOVX A,@DPTR
MOV R5,A

MOV DPH,R3
MOVX A,@DPTR

ADDC A,R5
MOV DPH,R4
MOVX @DPTR,A

INC DPL
DJNZ R1,NXT_BYTE
CLR A
ADDC A,R1

MOVX @DPTR, A
HERE: SJMP HERE

END

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 48

SAMPLE OUTPUT:

Before Execution:

The following five byte number is stored starting at external RAM address 9000H in Little
Endian format:

The following five byte number is stored starting at external RAM address 9100H in Little
Endian Format:

After Execution:

The sum of two five-byte numbers is stored starting at address 9200H in Little Endian Format.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 49

PROGRAM – 5: Write an ALP to search for the key element in a block of ‘N’ bytes. If the

number is present, show its position in the RAM location, 1050H. Otherwise, show FFH in

1050H location. Assume the key element is stored at RAM address 1000H and the data

block starts at the RAM location 1001H.

Description: This program is to search for a specific key element in a block of N bytes of data.

Here, we have considered 4 bytes of data in the memory block. We use simple linear search

technique to search for the key element. If it is a successful search then, we store the position of

the key element at address 1050H. Otherwise, we store FFH at address 1050H to indicate the

failure status.

Program:

; LINEAR SEARCH

RESULT EQU 1050H
KEY EQU 1000H
SIZE EQU 4H

MOV DPTR,#KEY ; RAM address of key element
MOV R1,#00H
MOVX A,@DPTR
MOV R0,A

BACK: INC DPTR
MOVX A,@DPTR
CJNE A,00H,NEXT
SJMP SUCCESS

NEXT: INC R1
CJNE R1,#SIZE,BACK
MOV R1,#0FFH

SUCCESS:MOV DPTR,#RESULT
MOV A,R1 ; Transfer position of key element to A

MOVX @DPTR,A
HERE: SJMP HERE

END

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 50

SAMPLE OUTPUT1:

Before Execution:

The key element 34H is stored at external RAM address 1000H and the four array elements are
stored starting at external RAM address 1001H:

After Execution:

Since the key element 34H is not found in the array, FFH is stored at external RAM address
1050H to indicate failure.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 51

SAMPLE OUTPUT2:

Before Execution:

The key element 54H is stored at external RAM address 1000H and the four array elements are
stored starting at external RAM address 1001H:

After Execution:

Since the key element 54H is found in the array at position 02, the external RAM address 1050H
contains the position 02 to indicate successful search.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 52

PROGRAM – 6: Write an ALP to convert the binary number stored at RAM location

1000H into BCD and store the result in the next consecutive locations.

Description: This program is to convert the binary number to BCD i.e., we take one

hexadecimal number in external memory and convert it into BCD. We are using A (lower byte)

and R0 (higher byte) registers to store the result. These register contents are transferred to the

external RAM address 1001H and 1002H respectively.

Program:

; TO CONVERT BINARY NUMBER INTO BCD

MOV DPTR, #1000H
MOVX A,@DPTR ; fetch the input hexadecimal number from memory
MOV B,#100
DIV AB

INC DPTR
MOV R0,A

MOV A,B
MOV B,#10
DIV AB

SWAP A
ORL A,B

MOVX @DPTR, A ;transfer lower byte of the result to memory

INC DPTR
MOV A,R0
MOVX @DPTR,A ;transfer higher byte of the result to memory

HERE: SJMP HERE
END

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 53

SAMPLE OUTPUT:

Before Execution:

The binary number 41H is stored at external RAM address 1000H.

After Execution:

The Resultant BCD number 65 is stored at external RAM address 1001H.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 54

PROGRAM – 7: Write an ALP to compute the GCD and LCM of two 8-bit numbers stored

at RAM locations 1000H and 1001H and store the result in the next consecutive locations.

Description: This program is to compute the GCD and LCM of the two numbers stored in the

external memory. Here, we have used Euclid’s algorithm to compute the GCD. LCM is

computed by multiplying the two input numbers and dividing it by the GCD. The resultant GCD

and LCM are stored in external RAM in the next consecutive memory locations after the input

data.

Program:
;TO FIND GCD AND LCM OF TWO 8BIT NOS

MOV DPTR,#1000H
MOVX A,@DPTR ; fetch the first number from memory
MOV R0,A

INC DPTR
MOVX A,@DPTR ; fetch the second number from memory
MOV R1,A

MOV B,A
MOV A,R0

AGAIN: MOV R2,B
DIV AB

MOV A,R2
MOV R3,B
CJNE R3,#00,AGAIN

INC DPTR
MOVX @DPTR,A ; store the GCD in memory

MOV A,R0
MOV B,R2
DIV AB

MOV B,R1
MUL AB

INC DPTR
MOVX @DPTR,A ; store the lower byte of LCM in memory

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 55

MOV A,0F0H
INC DPTR
MOVX @DPTR,A ; store the higher byte of the LCM in memory

HERE: SJMP HERE
END

SAMPLE OUTPUT:

Before Execution:

The two input data bytes 15 (0FH) and 35 (23H) are stored at external RAM address 1000H and
1001H respectively.

After Execution:

The Resultant GCD, 05 and LCM, 105 (69H) are stored at external RAM address 1002H and
1003H respectively.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 56

PROGRAM-8: Write an ALP to simulate BCD up counter.

Description: This program counts the BCD number from 00 to 99. The A register is loaded with

the initial value 0. This value is sent to port P1. Each time, a value 1 is added to the A register

and DA A instruction is used so that the data in A register is in correct BCD form. This BCD

number is sent to port P1. We introduce suitable delay between each data so that counter can be

simulated. The process is repeated infinitely to count from 00 to 99 BCD.

Program:
;SIMULATION OF BCD UP COUNTER

CLR A
BACK: MOV P1,A ;send data to port P1

ACALL DELAY
ADD A,#01
DA A ;decimal adjust the content of A after addition
SJMP BACK

DELAY: MOV R3,#03FH
LOOP3: MOV R2,#0FFH
LOOP2: MOV R1,#0FFH
LOOP1: DJNZ R1,LOOP1

DJNZ R2,LOOP2
DJNZ R3,LOOP3

RET
END

SAMPLE OUTPUT:

The BCD up counter is simulated on PORT P1 which counts from 00-99.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 57

PROGRAM – 9: Write an ALP to arrange the ‘N’ 8-bit numbers stored starting at RAM

address 2000H in ascending order using Bubble Sort technique.

Description: This program is to sort the N 8-bit numbers stored in memory in ascending order

using Bubble sort technique. Here, we have considered 4 8-bit numbers in the memory. The

resultant numbers after sorting can be seen in the memory.

Program:
;TO ARRANGE 'N' 8-BIT NUMBERS IN ASCENDING ORDER

MOV R0,#4
DEC R0 ; Total number of passes

NXT_PASS: MOV DPTR,#2000H
MOV R1,00H ; Total number of comparisons in each pass

NXT_CMP: MOV R2,DPL
MOVX A,@DPTR
MOV 0F0H,A

INC DPTR
MOVX A,@DPTR
CJNE A, 0F0H,NOT_EQ
SJMP NO_SWAP

NOT_EQ: JNC NO_SWAP

MOV DPL,R2
MOVX @DPTR,A
INC DPTR
MOV A,0F0H
MOVX @DPTR,A

NO_SWAP: DJNZ R1,NXT_CMP
DJNZ R0,NXT_PASS

HERE:SJMP HERE
END

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 58

SAMPLE OUTPUT:

Before Execution:

The following four 8-bit numbers are stored starting at address 2000H:

After Execution:

The four 8-bit numbers after sorting are shown below:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 59

PROGRAM – 10: Write an ALP to multiply an 8-bit number stored at RAM location

1000H with a 16-bit number stored at RAM locations 1001H and 1002H. Store the result in

the next consecutive locations.

Description: This program is to multiply an 8-bit number with a 16-bit number. The input

numbers are stored in external memory. We first multiply the lower byte of the 16-bit number

with 8-bit number and store the 16-bit result in R3 (lower byte) and R4 (higher byte). Then, we

multiply the higher byte of the 16-bit number with 8-bit number and store the 16-bit result in R5

(lower byte) and R6 (higher byte). Then, we add the R4 and R5 contents and store the result in A

register. The carry generated is added with R6 register content. The result held in R3 and A are

stored in memory.

Program:
;MULTIPLICATION OF 16 BIT NUMBER WITH 8 BIT NUMBER

MOV DPTR,#1000H
MOVX A,@DPTR ;Read the 8-bit data from external memory
MOV R0,A

INC DPL
MOVX A,@DPTR ;Read the lower byte of the 16-bit data from external memory

MOV 0F0H,A
INC DPL
MOVX A,@DPTR ;Read the higher byte of the 16-bit data from external memory
MOV R1,A

MOV A,R0
MUL AB ;Multiply the 8-bit data with the lower byte of 16-bit data
MOV R3,A

MOV R4,0F0H

MOV B,R1
MOV A,R0
MUL AB ;Multiply the 8-bit data with the higher byte of 16-bit data

MOV R5,A
MOV R6,B

INC DPL

MOV A,R3

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 60

MOVX @DPTR,A
MOV A,R4
CLR C
INC DPL
ADD A,R5
MOVX @DPTR,A

CLR A
ADDC A,R6

INC DPL
MOVX @DPTR,A

HERE:SJMP HERE
END

SAMPLE OUTPUT:

Before Execution:

The 8 bit data 34H is stored at external RAM address 1000H and 16 bit data 2745H is stored in
Little Endian format at address 1001H.

After Execution:

The result of multiplication 7FA04H is stored starting at external RAM address 1002H in Little
Endian Format.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 61

EXERCISE FOR PART - A

Write an 8051 Assembly language program for the following:

1. Make the lower nibble of R2 the complement of the higher nibble of R3.

2. Exchange the lower nibbles of registers R4 and R5.

3. Double the unsigned number in register R2 and put the result in R3 (MS byte) and R4

(LS byte) using RLC instruction.

4. Random unsigned numbers are placed in registers R0 to R4. Find the largest number and

put it in R6.

5. Double the unsigned number in register R2 and put the result in R3 (MS byte) and R4

(LS byte) using MUL instruction.

6. Swap the nibbles of R0 and R1 so that the lower nibble of R0 swaps with the higher

nibble of R1 and higher nibble of R0 swaps with the lower nibble of R1.

7. Double the unsigned number in register R2 and put the result in R3 (MS byte) and R4

(LS byte) using ADD instruction.

8. Rotate DPTR one place to the left so that bit15 becomes bit0 and so on.

9. Treat registers R0 and R1 as 16-bit registers, and rotate them one place to the right so that

bit0 of R1 becomes bit7 of R0, bit0 of R0 becomes bit7 of R1 and so on.

10. Decrement DPTR from any initialized value to 0025H.

11. Use R4 (LSB) and R5 (MSB) as a single 16-bit counter and decrement the pair until they

become equal to 0000H.

12. Set every third byte in internal RAM from address 20H to 7FH to 1.

13. Put the address of each internal RAM location from address 30H to 70H as their content.

(Put 30H as data in location 30H, 31H as data in location 31H and so on).

14. Count the number of bytes in external RAM locations 2000H to 3000H that are greater

than the random unsigned number in R2 and less than the random unsigned number in

R3. Use registers R5 (LSB) and R6 (MSB) to hold the count.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 62

PART - B

INTERFACING MODULES USED:

 All-in-one I/O interface board

The Different Interfacing Modules Integrated in this All-in-one I/O Interface Board is.....
1) Logic Controller (8 input switches, 8 output LEDs)

2) Seven Segment Display Module (4 Digits, Implemented using Shift Registers)

3) LCD Interface (2x16 lines)

4) Stepper Motor Interface

5) DAC Interface

6) ADC Interface

7) Temperature Sensor Interface

8) AC Gadget Interface

9) Industrial Sensors Input Interface

10) Elevator Interface

11) Keyboard Interface

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 63

 8051 Microcontroller Board

The 8051 microcontroller board is connected to the CPU through a USB to UART bridge. The

I/O interface board is connected to this 8051 microcontroller board. Using Keil IDE, the hex file

is generated and using Flash Magic tool, the hex file is dumped into ROM of the 8051

Microcontroller so that we can work with the I/O interfacing programs.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 64

LOGIC CONTROLLER INTERFACE

For Logic Controller Interface, port P1 of 8051 is used as an input port and port P0 is used as an

output port. Port P0 pins of 8051 are connected to the output LEDs of the logic controller. If FFH

is sent on port P0 pins, then all the output LEDs will glow to indicate ON state. If 00H is sent on

P0 pins then all the eight LEDs will be in the OFF state.

An 8-bit data cannot be read at a time from the logic controller being used. Hence, the data is

read nibble by nibble. The switches used to set the input in the logic controller are connected to

8:4 MUX with control pin, SEL connected to port P1 pin, P1.4.The toggle switches are

associated with LEDs to indicate the state of the switches. When the switch is opened, the LED

is turned OFF and when the switch is closed, LED is turned ON. The output of MUX is

connected to the lower order 4 bits of port P1. When the SEL pin goes low, 8051 reads the lower

byte of the input data through port P1. When SEL pin goes high, 8051 reads the higher byte of

the input data.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 65

PROGRAM – 1: Write an 8051 C program to design a counter for counting the pulses of

an input signal fed through pin P3.4. Display each count on the logic controller interface.

(Use Counter 0 in mode2. The Count must be specified by the examiner).

#include<reg51.h>

void main()

{

T1=1;

TMOD=0x06; //Counter 0 in Mode2

TH0=0X00;

TL0=0x00;

while(1)

{

do

{

TR0=1; //start the counter

P0=TL0;// Send the count to Port P0

}while(TF0==0);

TR0=0;

TF0=0;

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 66

PROGRAM – 2: Write an 8051 C program to read the status of 8 input bits from the Logic

Controller Interface and display ‘FF’ if it is even parity bits otherwise display 00. Also

display number of 1’s in the input data.

#include<reg51.h>

typedef unsigned char tbyte;

typedef unsigned int tword;

sbit SEL=P1^4;

tbyte countOnes(tbyte x)

{

tbyte i,count=0;

for(i=0;i<8;i++)

{

if(x&(0x01<<i))

count++;

}

return count;

}

tbyte readInput(void)

{

tbyte temp=0;

SEL=0;

temp=P1 & 0x0f; //Read lower nibble of the input data

SEL=1;

temp=(P1 & 0x0f)<<4 |temp; //Read higher nibble of the input data

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 67

return temp;

}

void delayMs(tword x)

{ tbyte i;

while(x--)

for(i=0;i<200;i++);

}

void main(void)

{

tbyte temp,count;

while(1)

{

temp=readInput();

count=countOnes(temp);

if(count%2==0)

P0=0xff;

else

P0=0x00;

delayMS(1000);

P0=count;

delayMS(1000);

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 68

PROGRAM – 3: Write an 8051 C program to compute x * y using Logic Controller

Interface.

#include<reg51.h>

typedef unsigned char tbyte;

typedef unsigned int tword;

sbit key1=P3^2;

sbit key2=P3^3;

sbit key3=P3^4;

sbit SEL=P1^4;

tbyte readInput(void)

{

tbyte temp;

SEL=0;

temp=P1 & 0x0f;

SEL=1;

temp=(P1& 0x0f)<<4|temp;

return temp;

}

void delayMS(tword x)

{

tbyte i;

while(x--)

for(i=0;i<200;i++);

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 69

int main(void)

{

tbyte a=0,b=0;

tword c=0;

while(1)

{

if(!key1)

{

a=readInput(); //Read the first 8-bit number

P0=a;

delayMS(200);

P0=0x00;

delayMS(200);

}

if(!key2)

{

b=readInput(); //Read the second 8-bit number

P0=b;

delayMS(200);

P0=0x00;

delayMS(200);

}

if(!key3)

{

c=a * b; //Compute the product

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 70

P0=c & 0xff;

delayMS(500);

P0=c>>8;

delayMS(1000);

}

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 71

SEVEN SEGMENT DISPLAY INTERFACE

The above figure shows a 4-digit seven segment display interface. It is of common anode type.

i.e., to make a corresponding segment glow (ON), bit value 0 is to be sent and to turn off any

particular segment, bit value 1 need to be sent. Below table shows the construction of seven

segment code to display 3 on the seven segment display interface.

This is B0 in hexadecimal. A Serial In Parallel Out shift register is used to send the 8 bits of data

to the Seven segment display. To send the seven segment code B0H, start sending the bits from

MSB onwards i.e., D7 first, D6 next and so on with D0 being the last. The data bits are sent

through Port P0.0 pin. Clock pulses are required to clock in the data, 8 clock pulses are required

to display one byte of data. As the shift registers are cascaded, 8*4=32 clocks are required to

clock in 4 bytes of data. To send “1234”, first we have to send seven segment code of ‘1’, then

‘2’,‘3’ and lastly ‘4’. Common clock is applied through Port P0.1 pin.

h g f e d c b a

1 0 1 1 0 0 0 0

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 71

SEVEN SEGMENT DISPLAY INTERFACE

The above figure shows a 4-digit seven segment display interface. It is of common anode type.

i.e., to make a corresponding segment glow (ON), bit value 0 is to be sent and to turn off any

particular segment, bit value 1 need to be sent. Below table shows the construction of seven

segment code to display 3 on the seven segment display interface.

This is B0 in hexadecimal. A Serial In Parallel Out shift register is used to send the 8 bits of data

to the Seven segment display. To send the seven segment code B0H, start sending the bits from

MSB onwards i.e., D7 first, D6 next and so on with D0 being the last. The data bits are sent

through Port P0.0 pin. Clock pulses are required to clock in the data, 8 clock pulses are required

to display one byte of data. As the shift registers are cascaded, 8*4=32 clocks are required to

clock in 4 bytes of data. To send “1234”, first we have to send seven segment code of ‘1’, then

‘2’,‘3’ and lastly ‘4’. Common clock is applied through Port P0.1 pin.

h g f e d c b a

1 0 1 1 0 0 0 0

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 71

SEVEN SEGMENT DISPLAY INTERFACE

The above figure shows a 4-digit seven segment display interface. It is of common anode type.

i.e., to make a corresponding segment glow (ON), bit value 0 is to be sent and to turn off any

particular segment, bit value 1 need to be sent. Below table shows the construction of seven

segment code to display 3 on the seven segment display interface.

This is B0 in hexadecimal. A Serial In Parallel Out shift register is used to send the 8 bits of data

to the Seven segment display. To send the seven segment code B0H, start sending the bits from

MSB onwards i.e., D7 first, D6 next and so on with D0 being the last. The data bits are sent

through Port P0.0 pin. Clock pulses are required to clock in the data, 8 clock pulses are required

to display one byte of data. As the shift registers are cascaded, 8*4=32 clocks are required to

clock in 4 bytes of data. To send “1234”, first we have to send seven segment code of ‘1’, then

‘2’,‘3’ and lastly ‘4’. Common clock is applied through Port P0.1 pin.

h g f e d c b a

1 0 1 1 0 0 0 0

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 72

PROGRAM – 4: Write an 8051 C program to display the messages LIFE and HELP

alternately on a 4-digit seven-segment display Interface.

#include <reg51.h>

typedef unsigned char tbyte;

sbit DAT=P0^0;

sbit CLK=P0^1;

void writeSeg(tbyte x)

{ tbyte i;

for(i=0;i<8;i++)

{

if(x &(0x80>>i))

DAT=1;

else

DAT=0;

CLK=0;

CLK=1;

}

}

void delayMS(tword x)

{

tbyte i;

while(x--)

for(i=0;i<200;i++);

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 73

int main(void)

{

tbyte LIFE[4]={0XC7,0xCF,0x8E,0x86};

tbyte HELP[4]={0x89,0x86,0xC7,0x8C};

tbyte i;

while(1)

{

for(i=0;i<4;i++)

writeSeg(LIFE[i]);

delayMS(200);

for(i=0;i<4;i++)

writeSeg(HELP[i]);

delayMS(200);

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 74

PROGRAM – 5: Write an 8051 C program to display the message “dEPt OF CSE” from

right-to-left and left-to-right on a 4-digit seven-segment display Interface.

#include <reg51.h>

typedef unsigned char tbyte;

typedef unsigned int tword;

sbit DAT=P0^0;

sbit CLK=P0^1;

void writeSeg(tbyte x)

{

tbyte i;

for(i=0;i<8;i++)

{

if(x &(0x80>>i))

DAT=1;

else

DAT=0;

CLK=0;

CLK=1;

}

}

void delayMS(tword x)

{

tword i;

while(x--)

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 75

for(i=0;i<200;i++);

}

void main(void)

{

tbytemsg[]={0xff,0xff,0xff,0xff,0xA1,0x86,0x8c,0x87,0xff,0xc0,0x8e,0xff,0xc6,0x92,0x86,0xff,0xff,0xff,0xff};

char i,j;

while(1)

{

for(i=0;i<16;i++) /*right to left */

{

for(j=i;j<i+4;j++)

writeSeg(msg[j]);

delayMS(300);

}

for(i=14;i>=0;i--) /*Left to right */

{

for(j=i;j<i+4;j++)

writeSeg(msg[j]);

delayMS(500);

}

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 76

STEPPER MOTOR INTERFACE

The operating voltage for stepper motor is +12V DC. The stepper motor has four stator

windings. The stator windings or coils are connected to the Darlington pair transistors to

energize each coil. The Darlington transistor base is connected to the port P0 (P0.4-P0.7). The

step angle is 1.8º i.e., 200 steps per revolution. The port P0 bits P0.7, P0.6, P0.5 and P0.4 are

used to energize the four windings.

 Data pattern to be sent through Port P0 to rotate the motor is as follows:

For clockwise For anticlockwise
P0.7 P0.6 P0.5 P0.4 windings P0.7 P0.6 P0.5 P0.4

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

(The motor will move by 1 step for every pattern change)

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 77

PROGRAM – 6: Write an 8051 C program to drive a Stepper motor Interface to rotate the

motor by N steps in clockwise direction and N steps in anti-clockwise direction. Introduce

suitable delay between successive steps.

#include <reg51.h>

typedef unsigned char tbyte;

typedef unsigned int tword;

sbit W3=P0^7;

sbit W2=P0^6;

sbit W1=P0^5;

sbit W0=P0^4;

tbyte no_of_steps_clk=100;

tbyte no_of_steps_anticlk=100;

void delayMs(tword x)

{

tword i;

while(x--)

for(i=0;i<200;i++);

}

void main(void)

{

while(1)

{

W3=1;W2=0;W1=0;W0=0; delayMs(100);if(--no_of_steps_clk==0)break;

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 78

W3=0;W2=1;W1=0;W0=0; delayMs(100);if(--no_of_steps_clk==0)break;

W3=0;W2=0;W1=1;W0=0; delayMs(100);if(--no_of_steps_clk==0)break;

W3=0;W2=0;W1=0;W0=1; delayMs(200);if(--no_of_steps_clk==0)break;

}

while(1)

{

W3=0;W2=0;W1=0;W0=1;delayMs(100);if(--no_of_steps_anticlk==0)break;

W3=0;W2=0;W1=1;W0=0;delayMs(100);if(--no_of_steps_anticlk==0)break;

W3=0;W2=1;W1=0;W0=0;delayMs(100);if(--no_of_steps_anticlk==0)break;

W3=1;W2=0;W1=0;W0=0;delayMs(100);if(--no_of_steps_anticlk==0)break;

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 79

LIQUID CRYSTAL DISPLAY (LCD) INTERFACE

LCD consists of Display Data RAM (DDRAM), CGROM (Character Generator ROM), shift

registers, bit/pixel drivers, refreshing logics and LCD controllers. The data to be displayed on

LCD is to be written on to the DDRAM using ASCII format. CGROM contains bit/pixel patterns

for every character to be displayed (Preprogrammed).Shift registers are used to convert CGROM

parallel data to serial data. Drivers are required to drive (ON/OFF) the bits. Refreshing logics are

required to hold the display data, as the dots are displayed row by row basis continuously, like in

CRT.

Whatever the data you write to LCD is of two types, either it is a command written to the

instruction command code register of LCD (Configuration) or ASCII code of character to be

displayed on LCD (DDRAM) which is written to the data register of LCD.

 The RS (Register Select) pin is used for selection of either the command register or the

data register.

 If RS = 0, then the instruction command code register is selected, allowing the

user to send a command such as clear display etc.

 If RS= 1, then the data register is selected, allowing the user to send data to be

displayed on the LCD.

 R/W (Read/Write) pin allows the user to write information to the LCD or read

information from it. R/W = 1 when reading; R/W=0 when writing.

 E (Enable) pin is used by the LCD to latch the information present at the data pins. When

data is supplied to data pins, a high-to-low pulse must be applied to this pin in order for

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 80

the LCD to latch in the data present at the data pins. This pulse must be minimum of

450ns wide.

 D0-D7: These are 8-bit data pins used to send information to the LCD or read the

contents of the LCD’s internal registers.

Following two steps are to be followed to program the LCD:

1. Configure LCD by writing commands.

2. Write the actual string data, character by character by issuing DDRAM address command

0x80 for first line, 0xC0 for second line.

LCD Command codes:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 81

List of LCD Instructions:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 82

PROGRAM – 7: Write an 8051 C program to display the strings on a 2x16 character LCD

Interface.

#include<reg51.h>

#include<intrins.h>

typedef unsigned char tbyte;

//name of the LCD pins

sbit RS=P1^4;//0-command 1-data

sbit RW=P1^5;//0-Write 1-read

sbit E=P1^6;//1 to 0.perform writing of command/data

void delay(tbyte val)

{

tbyte i;

for(i=0;i<val;i++)

{

nop();

nop();

nop();

nop();

nop();

}

}

void enpulse(void)

{

E=1;

delay(2);

E=0;

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 83

delay(2);

}

void LCD_Command(tbyte command)

{

RS=0;

RW=0;

P0=command;

enpulse();

delay(50);

}

void LCD_Data(tbytedatabyte)

{

RS=1;//data is written

RW=0;

P0=databyte;

enpulse();

delay(50);

}

void LCD_DispStr(tbyteline_no,char *str)

{

tbyte i;

if(line_no==1)

LCD_Command(0x80);

else

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 84

LCD_Command(0xc0);

for(i=0;str[i]!=’\0’;i++)

{

LCD_Data(str[i]);

if(i==16)

break;

}

}

void LCD_Init(void)

{

LCD_Command(0x38);//function set-2 line display,byte mode

LCD_Command(0x0c);//display on

LCD_Command(0x01); //clear the display

}

main()

{

tbyte str1[]="WEDNESDAY";

tbyte str2[]="21/03/2018";

LCD_Init();

LCD_DispStr(1,str1);

LCD_DispStr(2,str2);

while(1);

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 85

KEYBOARD INTERFACE

The keyboard interface used is a 4x4 matrix as shown in above figure. Columns are

connected to Port P1’s lower order 4 pins of 8051 and rows are connected to Port P0’s lower

order 4 pins of 8051.

 If no key is pressed , we will have the bit status ‘1111’ on input port pins P1.3-P1.0

(col0-col3) , as all the inputs are pulled up by pull up resistors.

 If any key is pressed, say key ‘0’, it will short row0 and col0 lines, so whatever data(0 or

1) available at row0is available at col0. Since already columns are pulled high, it is

required to apply logic ‘0’ at row0 to see change in col0when the key is pressed.

 If we apply ‘0000’ on all the rows 0-3 (P0.0 - P0.3 lines) and read corresponding columns

0-3 (P1.3-P1.0), if it is other than ‘1111’, then it means some key is pressed, else no key

is pressed. This process can be repeated in a loop indefinitely to check for the key press.

 To identify which key is pressed , after key press is detected

 Check for a key press in first row by sending ‘0111’on rows (P0.0-P0.3) and

reading the columns. If it is ‘1111’(P1.3- P1.0), then go to next row, else

identify the column number.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 86

 Check for a key press in second row by sending ‘1011’on rows (P0.0-P0.3)

and reading the columns. If it is ‘1111’(P1.3- P1.0), then go to next row, else

identify the column number.

 Check for a key press in third row by sending ‘1101’on rows (P0.0-P0.3) and

reading the columns. If it is ‘1111’(P1.3-P1.0), then go to next row, else

identify the column number.

 Check for a key press in last row by sending ‘1110’on rows (P0.0-P0.3) and

reading the columns, if it is ‘1111’(P1.3-P1.0), then check for key press

again, else identify the column position.

PROGRAM – 8: Write an 8051 C program to scan a 4 x 4 keypad for key closure and

display the code of the key pressed on LCD.

#include<reg51.h>

#include<intrins.h>

typedef unsigned char tbyte;

typedef unsigned int tword;

sbit r0=P0^0;

sbit r1=P0^1;

sbit r2=P0^2;

sbit r3=P0^3;

sbit c0=P1^3;

sbit c1=P1^2;

sbit c2=P1^1;

sbit c3=P1^0;

sbitrs=P1^4;

sbitrw=P1^5;

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 87

sbit e=P1^6;

tbyte key;

tbyte codekeys[4][4]={ {'0','1','2','3'},{'4','5','6','7'},{'8','9','A','B'},{'C','D','E','F'}};

void delay(tbyte val)

{

tbyte i;

for(i=0;i<val;i++)

{

nop();

nop();

nop();

nop();

nop();

}

}

void lcd_init(void)

{

lcd_com(0x38);

lcd_com(0x0c);

lcd_com(0x01);

}

void enpulse(void)

{

e=1;

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 88

delay(2);

e=0;

delay(2);

}

void lcd_com(tbyte command)

{

rs=rw=0;

P0=command;

enpulse();

delay(50);

}

void lcd_data(tbytedatabyte)

{

rs=1;

rw=0;

P0=databyte;

enpulse();

delay(50);

}

void main(void)

{

tbyte rowp,colp,i;

r0=r1=r2=r3=0;

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 89

c0=c1=c2=c3=1;

while(1)

{

while(1)

{

r0=0,r1=1,r2=1,r3=1;

rowp=0;

if(c0==0){colp=0;break;}

if(c1==0){colp=1;break;}

if(c2==0){colp=2;break;}

if(c3==0){colp=3;break;}

r0=1,r1=0,r2=1,r3=1;

rowp=1;

if(c0==0){colp=0;break;}

if(c1==0){colp=1;break;}

if(c2==0){colp=2;break;}

if(c3==0){colp=3;break;}

r0=1,r1=1,r2=0,r3=1;

rowp=2;

if(c0==0){colp=0;break;}

if(c1==0){colp=1;break;}

if(c2==0){colp=2;break;}

if(c3==0){colp=3;break;}

r0=1,r1=1,r2=1,r3=0;

rowp=3;

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 90

if(c0==0){colp=0;break;}

if(c1==0){colp=1;break;}

if(c2==0){colp=2;break;}

if(c3==0){colp=3;break;}

}

delay(200);

key=codekeys[rowp][colp];

while(c0==0||c1==0||c2==0||c3==0) ;

delay(20);

lcd_init();

lcd_com(0x80);

lcd_data(key);

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 91

DIGITAL TO ANALOG CONVERTER (DAC) INTERFACE:

The DAC interface consists of DAC chip, OPAMP 741 and voltage converter. A reference

voltage of +5V is generated using the voltage regulator and is fed to Vref point of DAC. The

output voltage of +5V is obtained from DAC when the digital input is FFH and the output

voltage will be 0V when the digital input is 00H. The output of DAC is fed to the operational

amplifier to get the final output. The digital values 00H-FFH corresponds to the analog voltage

0-5V. The 8-bit data can be fed into DAC from Port P0 of 8051 microcontroller.

The digital formula used to get the values for positive cycle of the sine waveform is as follows:

127 sinƟ + 127

If 30 samplings are done to get the positive cycle of sine waveform then, we can get the values

by using the digital formula for every 6º increment (180º/30=6º)i.e.,

127 sin 0º +127 =127

127 sin 6º +127=140 and so on

This can be continued till 90º and the values computed can be considered in reverse order for
sampling values from 90º -180º.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 92

PROGRAM – 9: Write an 8051 C program to generate Half Rectified Sine wave, Fully

Rectified Sine and sine waveform using the DAC Interface. (The output of the DAC is to be

displayed on the CRO).

#include<reg51.h>

typedef unsigned char tbyte;

sbit key1=P3^2;

sbit key2=P3^3;

sbit key3=P3^4;

void main(void)

{

tbyte sine[]={127, 140, 153, 166, 178, 190, 201, 211, 221, 229, 236, 243, 247, 251, 253, 255, 253, 251,

247, 243, 236, 229, 221, 211, 201, 190, 178, 166, 153, 140, 127};

tbyte i;

while(1)

{

if(key1==0) /*Full Rectified*/

{

while(1)

{

for(i=0;i<31;i++)

P0=sine[i];

}

}

if(key2==0) /*Half Rectified*/

{

while(1)

{

for(i=0;i<31;i++)

P0=sine[i];

for(i=0;i<31;i++)

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 93

P0=0x7F;

}

}

if(key3==0) /*Sine Waveform*/

{

while(1)

{

for(i=0;i<31;i++)

P0=sine[i];

for(i=0;i<31;i++)

P0=~sine[i]+1;

}

}

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 94

ELEVATOR INTERFACE

The Elevator interface has 4:10 decoder. The Output port P0 pins, P0.0-P0.3 of 8051 are used as

input to the decoder. The output from the decoder is connected to 10 LEDs which indicate the

motion of the elevator. The elevator motion is indicated by turning ON/OFF the successive

LEDs one at a time in fixed time intervals. The LED’s ON state indicates the current position of

the elevator. The user can request for service to any of the four floors (Ground floor, first floor,

second floor, third floor) by pressing the request keys. Each floor has an LED which gets turned

ON when there is a request from the corresponding floor. This request is latched by D Flip-flops.

The preset input of each D Flip-flop is connected to each of the request keys. The clear pin of

each D Flip-flop is connected to the port P0 pins, P0.7-P0.4. The request status can be read

through input Port P1 pins, P1.3-P1.0. To service the request from any of the floors, a 0 is sent to

CLR pin of the corresponding floor’s D Flip-flop through corresponding Port P0 pin. To indicate

that the floor request is serviced, the corresponding floor LED is turned OFF. The elevator waits

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 95

at the ground floor till there is any request from any of the floors. If any request comes then the

elevator moves to that floor and services that request. If any other request comes while moving

up or while coming down then the elevator services it and returns back to the ground floor.

PROGRAM – 10: Write an 8051 C program to drive an elevator interface in the following

way:

Initially the elevator should be in the ground floor, with all requests in OFF state. When a

request is made from a floor to any other floor, the elevator should move up or move down

to that requested floor, service the request and stay in that floor waiting for any new

request.

#include<reg51.h>

typedef unsigned char tbyte;

typedef unsigned int tword;

void delayMs(tword x)

{

tword i;

while(x--)

for(i=0;i<100;i++);

}

void main(void)

{ // 1 2 4 8

tbyte flr[]={0xff,0x09,0x06,0xff,0x03,0xff,0xff,0xff,0x00};

tbyte fclr[]={0xff,0xe9,0xd6,0xff,0xb3,0xff,0xff,0xff,0x70};

tbyte reqflr,curflr=0x08,i,j;

P0=0x00;

P0=0xf0;

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 96

while(1)

{ P1=0XFF;

reqflr=P1 | 0xf0;

while(reqflr==0xff)

reqflr=P1 | 0xf0;

reqflr=~reqflr;

if(curflr>reqflr)

{

i=flr[reqflr]-flr[curflr];

j=flr[curflr] + 1;

for(;i>0;i--)

{

P0=0xf0 | j;

j++;

delayMs(100);

}

}

else if(curflr<reqflr)

{

i=flr[curflr]-flr[reqflr];

j=flr[curflr] - 1;

for(;i>0;i--)

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 97

{

P0=0xf0 | j;

j--;

delayMs(100);

}

}

curflr=reqflr;

delayMs(100);

P0=fclr[curflr];

}

}

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 98

EXERCISE FOR PART-B

Write an 8051 Embedded C program for the following:

1. Read the status of 8 input bits from the Logic Controller Interface and display the

complement of it.

2. Simulate BCD up-down counter using Logic Controller Interface.

3. Simulate Ring counter using Logic Controller Interface.

4. Display “CSE2017” on Seven Segment Display Interface in rolling fashion.

5. Read two numbers through keyboard interface and compute their sum.

6. Generate Square waveform using the DAC Interface.

7. Generate Rectangular waveform using the DAC Interface.

8. Generate Ramp waveform using the DAC Interface.

9. Generate Triangular waveform using DAC Interface.

10. Generate Staircase waveform using the DAC Interface.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 99

VIVA VOCE QUESTION BANK

1. What is a microcontroller?

2. How a microcontroller differs from a microprocessor?

3. 8051 is how many bit microcontroller?

4. What does 8-bit signify in an 8-bit microcontroller?

5. Which is the program memory in 8051?

6. Which is the data memory in 8051?

7. What is the size of internal RAM in 8051?

8. What is the on-chip ROM size of 8051?

9. Which is the ROMless version of 8051?

10. Which are the 16-bit registers in 8051?

11. Name the only registers in 8051 that are used to perform multiplication and division operations.

12. How to access the DPTR register of 8051 individually as two 8-bit registers?

13. Name the register in 8051 that is not having any address.

14. What is the program memory type in 8751 microcontroller?

15. Which register is used to hold the address of external data memory?

16. What is the width of 8051 data bus and address bus?

17. Which register is used as the destination operand in all arithmetic instructions?

18. Which register is used to point to the next instruction in the program memory of 8051?

19. In which memory of 8051, the Stack is implemented?

20. Which register is used to point to the top of the stack in 8051 and what is its size?

21. In which order of memory address, the stack grows in 8051?

22. How many register banks are there in 8051 and how many registers each bank contain?

23. Which register bits need to be updated to select a particular register bank in 8051?

24. Which register bank is selected by default in 8051?

25. How many pin IC is this 8051 microcontroller?

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 100

26. How many parallel ports are there in 8051 and how many bits each?

27. Which port of 8051 is dedicated for only I/O operations?

28. Which port of 8051 is used as data bus when external memory is used?

29. Which port of 8051 is used for interrupt input, timer/counter input, and serial I/O?

30. In which memory area, SFRs of 8051are implemented and what is its address range?

31. What is the address range of on-chip RAM in 8051?

32. How many external interrupt and internal interrupts are there in 8051?

33. What is the address range of the bit-addressable memory in internal RAM of 8051?

34. What is the size of the scratch-pad memory of 8051 and what is its address range?

35. Which is the flag register in 8051and what is its size?

36. How many bytes in internal RAM of 8051 are used for register bank?

37. What is the number of registers in each register bank and how they are numbered?

38. How to access the working registers of 8051?

39. How many bytes in internal RAM of 8051 are used as bit-addressable memory?

40. What RAM locations are used for register R0-R7 in register bank 0 of 8051?

41. What RAM locations are used for register R0-R7 in register bank 1 of 8051?

42. What RAM locations are used for register R0-R7 in register bank 2 of 8051?

43. What RAM locations are used for register R0-R7 in register bank 3 of 8051?

44. When EA is connected to ground, from which memory the code byte is fetched?

45. What is the On-chip ROM address space of 8051?

46. How many I/O pins are there in 8051?

47. With what value the Stack pointer is initialized to after 8051 is reset?

48. How many interrupt sources 8051 contains?

49. Which bits in the PSW register selects a register bank?

50. Which ports serve as low order and high order address bus for external memory access?

51. How many bytes are allocated for SFR in on-chip data memory?

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 101

52. If the bit address in the internal RAM of 8051 is 1EH then what is its byte address?

53. Write the instruction to set the 4th bit at byte address 24H in the internal RAM.

54. Write the set of instructions to store the data 45H to the register R5 in the register bank2.

55. List the instructions that can be used to clear the contents of a register.

56. Which instruction can be used to exchange the nibbles of an 8-bit data?

57. Which instruction can be used to mask certain bits in an 8-bit data?

58. Which instruction can be used to set certain bits in an 8-bit data?

59. Differentiate between “MOVX” and “MOVC” instructions.

60. What is the use of RS and E pins of Liquid Crystal Display?

61. What is the size of external RAM that 8051 can address?

62. Which instruction can be used to invert certain bits in an 8-bit data?

63. What is maximum machine cycle taken to execute an instruction in 8051?

64. What are addressing modes?

65. List the addressing modes supported in 8051.

66. Identify the addressing mode of source and destination operands in the following instructions:

a) MOV A,#46H b) XRL 37H,A c) MOVX @DPTR,A
67. Which is the only addressing mode allowed in the instructions to perform push and pop stack

operations?

68. What type of CPU architecture 8051 contains?

69. When the Auxiliary carry flag is set?

70. When the Overflow flag is set?

71. When the Carry flag is set?

72. When the Parity flag is set?

73. In AT89C51, what does C and 51 signify?

74. Which instructions take maximum machine cycles to execute?

75. What is the length of the following instructions?

a) MOV 67H,R0
b) ADD A,R1

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 102

c) ORL 34H,#82H
d) CJNE A,#45H,NEXT
e) MOV DPTR,#9000H

76. What are the differences between RISC and CISC?

77. Which register is mainly used to receive the extended result from multiply and divide operations?

78. Direct addressing mode can be used to access which memory?

79. What is the time taken by the 5 MHz microcontroller to execute 4 cycle instruction?

80. The PC in 8051 is associated with which memory?

81. Show how to save the status of P2.7 in RAM bit location 31.

82. To ensure the integrity in which memory, the checksum byte method is used?

83. What is the memory addressing capability of a microprocessor having 20-bit address bus?

84. In 8051, program instructions may require how many machine cycles to execute?

85. How many timers/counters 8051 has and how many bits each?

86. In the instruction JZ Next, which register content is checked for zero?

87. Which register is used to hold the data for serial transmission?

88. Identify the mistakes in the following instructions:

a) MOV R1,R2 b) MOV A,@R2 c) PUSH R6

89. What is the Command word used to select first line in a 2x16 character LCD?

90. How many address lines are required to access 4Kbytes of memory?

91. Show how you would check whether the P flag is high.

92. What is the function of ALE signal?

93. What are the functions of TxD and RxD?

94. If (A)=F6H and (B)=FEH, then what will be stored in B register after the execution of MUL AB
instruction?

95. When the rollover take place in mode1 counter?

96. Who provides the clock pulses to 8051 timers if C/T=1?

97. What is the function of a TMOD register?

98. In which register do we find the timer start bits and timer rollover flags?

99. Which mode of the timer is used to set the baud rate?

100. Which timer of 8051 is used to set the baud rate?

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 103

APPENDIX

THE 8051 MICROCONTROLLER

ARCHITECTURAL FEATURES

 8051 is an 8-bit µc which comes under CISC processors and it uses Harvard architecture.

 8051 is available as a 40-pin chip which works at +5V.

 It has 8-bit data bus and 16-bit address bus.

 It has 8-bit CPU with registers A (the Accumulator) and B of 8-bit each.

 A register receives the result of all arithmetic operations. It is also used to hold the

data during external memory access.

 B register is mainly used to receive the extended result from multiply and divide

operations.

 It has 8-bit Program Status Word (PSW) register.

 The result of ALU operation is updated in PSW.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 104

 It keeps track of overflow, carry, negative results etc.

 It also keeps track of which memory bank is currently selected.

 It has 16-bit program counter (PC) register.

 It is used to point to the next instruction to be fetched from code memory (ROM).

 Each time an instruction is fetched, PC is incremented so that it points to the next

instruction to be fetched for execution.

 PC is modified when a jump or call instruction is executed.

 It has 16-bit Data pointer (DPTR) register.

 It is used to access external data memory.

 It can be accessed individually as two 8-bit registers, DPH and DPL.

 It is under the control of the program.

 It has 8-bit Stack pointer (SP) register.

 It is used to point to the top of the stack.

 It grows in the direction of increasing memory address.

 It has Internal ROM or EPROM of 0 to 4K.

 It is the program memory which is read-only.

 8031 has 0K ROM

 8051 has 4K ROM

 8751 has 4K UV-EPROM

 It has Internal RAM of 128 bytes which is sectioned as follows:

 4 register banks, each containing 8 registers where each register size is 8-bit.

 16 bytes, which may be addressed at the bit level.

 80 bytes of general-purpose data memory.

 32 input/output pins arranged as four 8-bit ports: P0 - P3

 P0 is used as a general purpose I/O port. With presence of external memory it

functions as a multiplexed address (lower byte address A0-A7) and data bus (D0-D7).

 P1 is used only as a general purpose I/O port.

 P2 is used as a general purpose I/O port. With presence of external memory it

functions as an address bus (higher byte address A8-A15).

 P3 is used as a general purpose I/O port. Alternate functions are

o interrupt inputs

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 105

o serial data I/O

o timer/counter input

o read/write control when external memory is used.

 Special Function Registers (SFRs) are dedicated RAM area (128 bytes) ranging from

80H to FFH. SFRs contain control registers.

 Control registers: TCON, TMOD, SCON, PCON, IP, and IE.

 It has two 16-bit Timer/Counters: T0 and T1.

 It has one serial port for serial communication.

 SBUF is a serial port data buffer register which is used to hold the data to be

transmitted and receive the data via serial port.

 It has 2 external and 3 internal interrupt sources.

 It has Oscillator and clock circuits to generate timing signals for synchronization of all

operations in the microcontroller.

INTERNAL RAM ORGANIZATION

 The 128 bytes internal RAM is organized into three distinct area:

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 106

 32-bytes from address 00H to 1FH that make up 32 working registers organized as

four banks of eight registers each.

o Register banks are numbered 0-3

o 8 registers are named as R0-R7.

o Each register can be addressed by name or by its RAM address.

o Bits RS0 (bit 3) and RS1 (bit 4) in the PSW determine which bank of registers is

currently in use at any time program is running.

o Register banks not selected can be used as general-purpose RAM.

o Bank 0 is selected upon reset.

 A bit-addressable area of 16 bytes occupies RAM byte addresses 20H to 2FH,

forming a total of 128 addressable bits.

o An addressable bit may be specified by its bit address of 00H to 7FH, or 8 bits

may form any byte address from 20H to 2FH.

 A general-purpose RAM area (Scratch pad memory) above the bit area, from 30H to

7FH, are addressable as bytes.

FLAGS AND THE PROGRAM STATUS WORD (PSW)

 Flags are 1-bit registers provided to store the results of certain program instructions.

 There are instructions in 8051 which can check the flags status and make decisions based

on them.

 The 8051 has

 4 math flags which are updated based on result of math operations.

o Math flags include Carry (CY), Auxiliary Carry (AC), Overflow (OV), and

Parity (P).

 3 general-purpose user flags which may be used by the programmer to record some

event in the program.

o General-purpose User flags are named F0 (in PSW register), GF0 and GF1

(in PCON register)

 The direct RAM address of PSW register is D0H.

 PSW register is bit addressable as PSW.0 to PSW.7

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 107

The PSW is shown in below figure:

Bit Symbol Function

7 CY Carry flag; CY=1 if carry is generated out of MSB or borrow is generated into
MSB. It is used in arithmetic, JUMP, ROTATE, and Boolean instructions

6 AC Auxiliary Carry flag; AC=1 if carry is generated from lower nibble to higher
nibble or borrow is generated from higher nibble to lower nibble. It is used for
BCD arithmetic.

5 F0 User Flag 0

4 RS1 Register bank Select bit 1

3 RS0 Register bank Select bit 0

RS1 and RS0 bits identify which of the four general-purpose register banks is currently in use by the
program.

RS1 RS0
0 0 Select register bank 0
0 1 Select register bank 1
1 0 Select register bank 2
1 1 Select register bank 3

2 OV Overflow flag; OV=1 if the result of operation exceeds the representable range
(- 128 to +127). It is used in arithmetic instructions

1 - Undefined; It is reserved for future use

0 P Parity flag; It shows the parity of register A. P=1 if register A contains odd
number of 1’s (odd parity).

SPECIAL FUNCTION REGISTERS (SFRs)

 SFRs may be addressed much like 128 byte internal RAM, using addresses from 80H to

FFH.

 Some SFRs are also bit-addressable. This feature allows the programmer to change only

what needs to be altered, leaving the remaining bits in that SFR unchanged.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 107

The PSW is shown in below figure:

Bit Symbol Function

7 CY Carry flag; CY=1 if carry is generated out of MSB or borrow is generated into
MSB. It is used in arithmetic, JUMP, ROTATE, and Boolean instructions

6 AC Auxiliary Carry flag; AC=1 if carry is generated from lower nibble to higher
nibble or borrow is generated from higher nibble to lower nibble. It is used for
BCD arithmetic.

5 F0 User Flag 0

4 RS1 Register bank Select bit 1

3 RS0 Register bank Select bit 0

RS1 and RS0 bits identify which of the four general-purpose register banks is currently in use by the
program.

RS1 RS0
0 0 Select register bank 0
0 1 Select register bank 1
1 0 Select register bank 2
1 1 Select register bank 3

2 OV Overflow flag; OV=1 if the result of operation exceeds the representable range
(- 128 to +127). It is used in arithmetic instructions

1 - Undefined; It is reserved for future use

0 P Parity flag; It shows the parity of register A. P=1 if register A contains odd
number of 1’s (odd parity).

SPECIAL FUNCTION REGISTERS (SFRs)

 SFRs may be addressed much like 128 byte internal RAM, using addresses from 80H to

FFH.

 Some SFRs are also bit-addressable. This feature allows the programmer to change only

what needs to be altered, leaving the remaining bits in that SFR unchanged.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 107

The PSW is shown in below figure:

Bit Symbol Function

7 CY Carry flag; CY=1 if carry is generated out of MSB or borrow is generated into
MSB. It is used in arithmetic, JUMP, ROTATE, and Boolean instructions

6 AC Auxiliary Carry flag; AC=1 if carry is generated from lower nibble to higher
nibble or borrow is generated from higher nibble to lower nibble. It is used for
BCD arithmetic.

5 F0 User Flag 0

4 RS1 Register bank Select bit 1

3 RS0 Register bank Select bit 0

RS1 and RS0 bits identify which of the four general-purpose register banks is currently in use by the
program.

RS1 RS0
0 0 Select register bank 0
0 1 Select register bank 1
1 0 Select register bank 2
1 1 Select register bank 3

2 OV Overflow flag; OV=1 if the result of operation exceeds the representable range
(- 128 to +127). It is used in arithmetic instructions

1 - Undefined; It is reserved for future use

0 P Parity flag; It shows the parity of register A. P=1 if register A contains odd
number of 1’s (odd parity).

SPECIAL FUNCTION REGISTERS (SFRs)

 SFRs may be addressed much like 128 byte internal RAM, using addresses from 80H to

FFH.

 Some SFRs are also bit-addressable. This feature allows the programmer to change only

what needs to be altered, leaving the remaining bits in that SFR unchanged.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 108

 Not all of the addresses from 80H to FFH are used for SFRs, and attempting to use an

address that is not defined results in unpredictable results.

 SFRs are named in certain opcodes by their functional names, and are referenced by other

opcodes by their addresses.

 Note that PC is not part of SFR and has no internal RAM address.

 The SFR names and equivalent internal RAM addresses are given in the following table:

NAME FUNCTION INTERNAL RAM ADDRESS

A Accumulator 0E0H

B Arithmetic 0F0H

DPH Addressing external memory 83H

DPL Addressing external memory 82H

IE Interrupt enable control 0A8H

IP Interrupt priority 0B8H

P0 I/O port Latch 80H

P1 I/O port Latch 90H

P2 I/O port Latch 0A0H

P3 I/O port Latch 0B0H

PCON Power control 87H

PSW Program Status Word 0D0H

SCON Serial port control 98H

SBUF Serial port data buffer 99H

SP Stack Pointer 81H

TMOD Timer/Counter mode control 89H

TCON Timer/Counter control 88H

TL0 Timer 0 low byte 8AH

TH0 Timer 0 high byte 8CH

TL1 Timer 1 low byte 8BH

TH1 Timer 1 high byte 8DH

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 109

PIN- OUTS OF 8051 MICROCONTROLLER

 Out of 40 pins, 32 are I/O pins which are available as 4 parallel ports of 8-bits each.

 Port 0 (32-39):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is 80H.

o It is bit/byte addressable.

o During external memory access (RAM/ROM), it functions as multiplexed data

and lower-order address bus AD0-AD7.

 Port 1 (1-8):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is 90H.

o It is bit/byte addressable.

o It functions as simply an I/O port and it does not have any alternate functions.

 Port 2 (21-28):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is A0H.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 109

PIN- OUTS OF 8051 MICROCONTROLLER

 Out of 40 pins, 32 are I/O pins which are available as 4 parallel ports of 8-bits each.

 Port 0 (32-39):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is 80H.

o It is bit/byte addressable.

o During external memory access (RAM/ROM), it functions as multiplexed data

and lower-order address bus AD0-AD7.

 Port 1 (1-8):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is 90H.

o It is bit/byte addressable.

o It functions as simply an I/O port and it does not have any alternate functions.

 Port 2 (21-28):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is A0H.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 109

PIN- OUTS OF 8051 MICROCONTROLLER

 Out of 40 pins, 32 are I/O pins which are available as 4 parallel ports of 8-bits each.

 Port 0 (32-39):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is 80H.

o It is bit/byte addressable.

o During external memory access (RAM/ROM), it functions as multiplexed data

and lower-order address bus AD0-AD7.

 Port 1 (1-8):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is 90H.

o It is bit/byte addressable.

o It functions as simply an I/O port and it does not have any alternate functions.

 Port 2 (21-28):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is A0H.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 110

o It is bit/byte addressable.

o During external memory access (RAM/ROM), it functions as higher-order

address bus A8-A15.

 Port 3 (10-17):

o It is an 8-bit bi-directional I/O port.

o It is associated with a latch whose address is B0H.

o It is bit/byte addressable.

o Each pin of this port has alternate functions:

 P3.0 (RxD): It is an input signal to serial port data buffer register SBUF,

through which microcontroller receives data of serial communication network.

 P3.1 (TxD): It is an output signal of serial port data buffer register SBUF,

through which microcontroller transmits data of serial communication

network.

 P3.2 (0INT) and P3.3 (1INT): These are external interrupt input signals

through which microcontroller can be interrupted by peripheral.

 P3.4 (T0) and P3.5 (T1): These are input signals to internal timer-0 and timer-

1 circuits respectively.

 P3.6 (WR): It is an active low write output control signal. During external

RAM access, it is generated by microcontroller (WR = 0) to perform write

operation to external RAM.

 P3.7 (RD): It is an active low read output control signal. During external

RAM access, it is generated by microcontroller (RD = 0) to perform read

operation from external RAM.

 RST (9):

o It is an active high input signal used to reset microcontroller.

o To reset 8051 microcontroller, RST is made high for at least two machine cycles.

o Example: After reset, PC=0000H, SP = 07H, all internal RAM locations are

cleared to zero.

 XTAL2 (18) and XTAL1 (19):

o These two input lines for on-chip oscillator and clock generator circuit. A crystal

resonator is connected between these two pins.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 111

 VCC (40):

It is connected to + 5V power supply.

 GND (20):

It is connected to ground reference.

 PSEN (29) – Program Store Enable:

o It is an active low output signal used to enable external program memory (ROM).

o It is connected to OE of external ROM.

o When PSEN = 0, ROM becomes enabled and microcontroller reads the contents

of external ROM locations.

 ALE (30) – Address Latch Enable:

o It is an active high output signal used to demultiplex AD0-AD7 of port0.

o When ALE goes high, external address latch becomes enabled and whatever is

there in input to latch will be available at the output of latch. When ALE goes

low, it is used as data bus.

 EA (31) – External Access:

o It is an active low input signal to the microcontroller.

o For 8051, this pin is connected to Vcc so that the microcontroller can access both

internal and external program memory (ROM). Internal ROM is selected for

address 0000H-0FFFH. Beyond this address (1000H-FFFFH) external ROM is

selected.

o For 8031, this pin is connected to GND so that the microcontroller can access

only external ROM.

ADDRESSING MODES

The different methods of specifying the location of the operand in an instruction is referred to as

addressing modes.

The different addressing modes supported in 8051 are:

 Immediate addressing mode

 Register addressing mode

 Direct addressing mode

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 112

 Register-indirect addressing mode

 Indexed addressing mode

Immediate addressing mode

 In this addressing mode, the operand value is specified as part of the instruction.

 The operand value is preceded by ‘#’ symbol to indicate immediate addressing mode in

the instruction.

 Only the source operand can be specified using this addressing mode.

 The destination operand can be either a register or a memory location.

 Examples:

MOV A,#34H

ANL A,#01000010B

ADD A,#20

MOV R2,#78H

MOV 26H,#10H

MOV @R0,#45H

Register addressing mode

 In this addressing mode, the operand value is specified in a register and the register name

is specified in the instruction.

 The registers that can be specified in this mode are A, R0-R7, DPTR. Other registers can

be specified using their direct RAM address.

 Either source operand or destination operand can be specified using this addressing

mode. Both the source and destination operands can be in this mode if one of the operand

is A register and other operand is register R0-R7

 Examples:

MOV A,#34H

ANL A,R0

ADD A,@R0

INC R0

MOV 26H,R3

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 113

Direct addressing mode (used to access internal data memory only)

 In this addressing mode, the address of the operand is specified as part of the instruction.

 The valid direct address that can be used is in the range 00H-7FH. The SFRs

implemented in the address range 80H-FFH can be referred using direct addressing

mode.

 Either source or destination or both the operands can be specified using this addressing

mode. The operand specified using this mode cannot be altered during execution of the

program.

 Examples:

MOV A,34H

ANL 20H,R0

ADD A,40H

MOV R2,01H

PUSH 0E0H

MOV 26H,35H

Register-Indirect addressing mode

 In this addressing mode, the address of the operand is specified in a register and the

register name is used in the instruction.

 The register name is preceded by ‘@’ symbol to indicate register-indirect addressing

mode in the instruction.

 The valid registers that can be used to hold the address are R0, R1, and DPTR.

 Either source or destination operand can be specified using this addressing mode.

 The operand specified using this mode can be altered during execution of the program.

 Examples:

MOV A,@R0

ADD A,@R0

MOV @R1,01H

MOVX A,@DPTR

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 114

Indexed addressing mode

 In this addressing mode, the effective address of the operand is calculated by adding the

offset held in A register with the base address held in DPTR or PC register.

 The expression A+DPTR or A+PC preceded by ‘@’ symbol is used to indicate indexed

addressing mode in the instruction.

 Only the source operand can be specified using this addressing mode.

 This addressing mode can also be used to access the look-up table entries stored in the

program memory.

 The operand specified using this mode can be altered during execution of the program.

 Example:

MOVC A,@A+DPTR

MOVC A,@A+PC

INSTRUCTION SET AT GLANCE

SL.
NO.

INSTRUCTION
DESCRIPTION LENGTH

(BYTES) CYCLE(S)
MNEMONIC OPERAND(S)

ARITHMETIC OPERATIONS
1. ADD A,Rn Add register to Accumulator 1 1
2. ADD A,Direct Add direct byte to Accumulator 2 1

3. ADD A,@Ri Add indirect RAM to Accumulator 1 1

4. ADD A,#Data Add immediate data to Accumulator 2 1
5. ADDC A,Rn Add register to Accumulator with Carry flag 1 1
6. ADDC A,Direct Add direct byte to Accumulator with Carry flag 2 1
7. ADDC A,@Ri Add indirect RAM to Accumulator with Carry flag 1 1
8. ADDC A,#Data Add immediate data to Accumulator with Carry flag 2 1
9. SUBB A,Rn Subtract register from Accumulator with Borrow 1 1

10. SUBB A,Direct Subtract direct byte from Accumulator with Borrow 2 1

11. SUBB A,@Ri
Subtract indirect RAM from Accumulator with
Borrow

1 1

12. SUBB A,#Data
Subtract immediate data from Accumulator with
Borrow

2 1

13. INC A Increment Accumulator by one 1 1
14. INC Rn Increment register by one 1 1
15. INC Direct Increment direct byte by one 2 1
16. INC @Ri Increment indirect RAM by one 1 1
17. INC DPTR Increment Data pointer by one 1 2
18. DEC A Decrement Accumulator by one 1 1
19. DEC Rn Decrement register by one 1 1
20. DEC Direct Decrement direct byte by one 2 1

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 115

21. DEC @Ri Decrement indirect RAM by one 1 1

22. MUL AB
Multiply Accumulator and B. (A)=lower byte,
(B)=higher byte

1 4

23. DIV AB
Divide Accumulator by B. (A)=Quotient,
(B)=Remainder

1 4

24. DA A Decimal Adjust Accumulator 1 1
DATA TRANSFER OPERATIONS

25. MOV A,Rn Move register to Accumulator 1 1
26. MOV A,Direct Move direct byte to Accumulator 2 1
27. MOV A,@Ri Move indirect RAM to Accumulator 1 1
28. MOV A,#Data Move immediate data to Accumulator 2 1
29. MOV Rn,A Move Accumulator to register 1 1
30. MOV Rn,Direct Move direct byte to register 2 2
31. MOV Rn,#Data Move immediate data to register 2 1
32. MOV Direct,A Move Accumulator to direct byte 2 1
33. MOV Direct,Rn Move register to direct byte 2 2
34. MOV Direct,Direct Move direct byte to direct byte 3 2
35. MOV Direct,@Ri Move indirect RAM to direct byte 2 2
36. MOV Direct,#Data Move immediate data to direct byte 3 2
37. MOV @Ri,A Move Accumulator to indirect RAM 1 1
38. MOV @Ri,Direct Move direct byte to indirect RAM 2 2
39. MOV @Ri,#Data Move immediate data to indirect RAM 2 1
40. MOV DPTR,#Data16 Load Data pointer with a 16-bit constant 3 2
41. MOVC A,@A+DPTR Move code byte relative to DPTR to Accumulator 1 2
42. MOVC A,@A+PC Move code byte relative to PC to Accumulator 1 2
43. MOVX A,@Ri Move external RAM (8-bit address) to Accumulator 1 2

44. MOVX A,@DPTR
Move external RAM (16-bit address) to
Accumulator

1 2

45. MOVX @Ri,A Move Accumulator to external RAM (8-bit address) 1 2

46. MOVX @DPTR,A
Move Accumulator to external RAM (16-bit
address)

1 2

47. PUSH Direct Push direct byte onto stack 2 2

48. POP Direct Pop direct byte from stack 2 2
49. XCH A,Rn Exchange register with Accumulator 1 1
50. XCH A,Direct Exchange direct byte with Accumulator 2 1
51. XCH A,@Ri Exchange indirect RAM with Accumulator 1 1

52. XCHD A,@Ri
Exchange low-order Digit indirect RAM with
Accumulator

1 1

LOGICAL OPERATIONS
53. ANL A,Rn AND register to Accumulator 1 1

54. ANL A,Direct AND direct byte to Accumulator 2 1

55. ANL A,@Ri AND indirect RAM to Accumulator 1 1
56. ANL A,#Data AND immediate data to Accumulator 2 1
57. ANL Direct,A AND Accumulator to direct byte 2 1
58. ANL Direct,#Data AND immediate data to direct byte 3 2
59. ORL A,Rn OR register to Accumulator 1 1

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 116

60. ORL A,Direct OR direct byte to Accumulator 2 1
61. ORL A,@Ri OR indirect RAM to Accumulator 1 1
62. ORL A,#Data OR immediate data to Accumulator 2 1
63. ORL Direct,A OR Accumulator to direct byte 2 1
64. ORL Direct,#Data OR immediate data to direct byte 3 2
65. XRL A,Rn Exclusive-OR register to Accumulator 1 1

66. XRL A,Direct Exclusive -OR direct byte to Accumulator 2 1

67. XRL A,@Ri Exclusive-OR indirect RAM to Accumulator 1 1
68. XRL A,#Data Exclusive-OR immediate data to Accumulator 2 1

69. XRL Direct,A Exclusive-OR Accumulator to direct byte 2 1

70. XRL Direct,#Data Exclusive-OR immediate data to direct byte 3 2

71. CLR A Clear Accumulator 1 1
72. CPL A Complement Accumulator 1 1
73. RL A Rotate Accumulator Left 1 1

74. RLC A Rotate Accumulator Left through Carry flag 1 1

75. RR A Rotate Accumulator Right 1 1

76. RRC A Rotate Accumulator Right through Carry flag 1 1

77. SWAP A Swap nibbles within the Accumulator 1 1

BOOLEAN VARIABLE MANIPULATION
78. CLR C Clear Carry flag 1 1
79. CLR Bit Clear direct bit 2 1
80. SETB C Set Carry flag 1 1
81. SETB Bit Set direct bit 2 1
82. CPL C Complement Carry flag 1 1
83. CPL Bit Complement direct bit 2 1
84. ANL C,Bit AND direct bit to Carry flag 2 2

85. ANL C,/Bit AND complement of direct bit to Carry flag 2 2

86. ORL C,Bit OR direct bit to Carry flag 2 2

87. ORL C,/Bit OR complement of direct bit to Carry flag 2 2

88. MOV C,Bit Move direct bit to Carry flag 2 1
89. MOV Bit,C Move Carry flag to direct bit 2 2

PROGRAM AND MACHINE CONTROL
90. ACALL Addr11 Absolute Subroutine Call 2 2
91. LCALL Addr16 Long Subroutine Call 3 2
92. RET Return from Subroutine 1 2
93. RETI Return from Interrupt 1 2
94. AJMP Addr11 Absolute Jump 2 2
95. LJMP Addr16 Long Jump 3 2
96 SJMP Rel Short Jump (relative addr) 2 2
97. JMP @A+DPTR Jump indirect relative to the DPTR 1 2
98. JZ Rel Jump if Accumulator is zero 2 2
99. JNZ Rel Jump if Accumulator is Not zero 2 2
100. JC Rel Jump if Carry flag is set 2 2
101. JNC Rel Jump if Carry flag is Not set 2 2
102. JB Bit,Rel Jump if direct bit is set 3 2

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 117

103. JNB Bit,Rel Jump if direct bit id Not set 3 2
104. JBC Bit,Rel Jump if direct bit is set and Clear bit 3 2
105. CJNE A,Direct,Rel Compare direct to A and Jump if Not Equal 3 2
106. CJNE A,#Data,Rel Compare immediate to A and jump if Not Equal 3 2

107. CJNE Rn,#Data,Rel
Compare immediate to register and Jump if Not
Equal

3 2

108. CJNE @Ri,#Data,Rel
Compare immediate to indirect and Jump if Not
Equal

3 2

109. DJNZ Rn,Rel Decrement register and Jump if Not Zero 2 2

110. DJNZ Direct,Rel Decrement direct and Jump if Not Zero 3 2

111. NOP No Operation 1 1

Timer/Counter Programming

 The 8051 has two 16-bit timers: Timer0 and Timer1.

 These timers can be used either as timers to generate a time delay or as counters to count

events happening outside the microcontroller.

 Timer 0 can be accessed as two 8-bit registers, TL0 (Timer0 Low byte) and TH0 (Timer0

High byte) whose RAM addresses are 8AH and 8CH respectively.

 Timer 1 can be accessed as two 8-bit registers, TL1 (Timer1 Low byte) and TH1 (Timer1

High byte) whose RAM addresses are 8BH and 8DH respectively.

 Below figure shows Timer0 and Timer1 registers:

TMOD (Timer Mode) register (RAM address:89H)

 Both Timer0 and Timer1 use TMOD register to set the various timer operation modes.

 TMOD is an 8-bit register in which the lower 4 bits are set aside for Timer0 and the

upper 4 bits for Timer 1.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 118

 M0 and M1 bits in both the nibbles are used to set the timer mode.

M1 M0 Mode Operating Mode

0 0 0 13-bit timer mode

0 1 1 16-bit timer mode

1 0 2 8-bit auto reload

1 1 3 Split timer mode

 C/T is used to decide whether the timer is used as a delay generator or an event counter.

If C/T = 0, then it is used as timer for delay generation (input from internal system clock).

The frequency for the timer is always 1/12th the frequency of the crystal attached to 8051.

If C/T = 1, then it is used as event counter to count each clock pulse coming from

external pin (Pin P3.4 for timer0 and P3.5 for timer1).

 If GATE = 0, then

 instructions TR0 = 1 and TR0 = 0 starts and stops the timer0,

 instructions TR1 = 1 and TR1 = 0 starts and stops the timer1.

(TR0 and TR1 are bits of TCON register)

If GATE = 1, then the timer is started and stopped by an external source (Pin P3.2 for

timer0 and P3.3 for timer1).

TCON register (RAM address: 88H)

 While TMOD controls the timer modes, another register called TCON controls the

timer/counter operations.

 Timer is started by setting TRx bit, which is called Timer Run control bit and it is

stopped by clearing TRx bit.

 Whenever a timer counts to its maximum value, it sets Timer overflow Flag, TFx.

Bit Symbol Function

TCON.7 TF1 Timer1 overflow Flag

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 119

TCON.6 TR1 Timer1 Run control bit

TCON.5 TF0 Timer 0 overflow Flag

TCON.4 TR0 Timer 0 Rum control bit

Mode2 Programming:

The following are the characteristics and operations of mode2:

1. It is an 8-bit timer. Therefore, it allows only values of 00H to FFH to be loaded into the

timer’s register TH.

2. After TH is loaded with the 8-bit value, the 8051 gives a copy of it to TL. Then, the timer

must be started, which is done by the instruction TR0 = 1 for Timer0 and TR1=1 for

Timer1.

3. After the timer is started, it starts to count up by incrementing the TL register. It counts

up until it reaches its limit of FFH. When it rolls over from FFH to 00H, it sets high the

TF0 for Timer0 and TF1 for Timer1.

4. When TL register rolls from FFH to 0 and TF=1, TL is reloaded automatically with the

original value kept in TH register. To repeat the process, we must simply clear TF and let

it go without any need by the programmer to reload the original value. This makes mode2

an auto-reload.

Steps to program in mode2:

To generate a time delay using the timer’s mode2, the following steps are taken:

1. Load the TMOD register with value indicating which timer (Timer0 or Timer1) is to be

used, and select timer mode as mode2.

2. Load the TH register with the initial count value.

3. Start the timer.

4. Keep monitoring the timer flag (TF) with the statement while(TF==0); to see whether it

is raised. Come out of the loop when TF goes high.

5. Clear the TF flag.

6. Go back to step4, since mode2 is auto-reload.

Microcontroller Laboratory Manual

Dept. of CSE, SIT, Tumakuru-3 Page 120

References

1. Kenneth Ayala, “The 8051 Microcontroller”, 3rd edition, Cengage Learning 2005.

2. Muhammad Ali Mazidi, Janice Gillespie Mazidi, Rollin D. McKinlay, “The 8051

Microcontroller and Embedded Systems – using assembly and C”, 2nd edition -

PHI, 2006 / Pearson, 2006.

