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PROGRAM FLOW MECHANISMS 

Conventional computers are based on a control flow mechanism by which the order of program  execution
is explicitly stated in the user programs. Dataflow computers are based on a datadriven mechanism which
allows the execution of any instruction to be driven by data (operand) availability. Dataflow computers
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emphasize  a high degree of parallelism at  the fine-grain instructional  level.  Reduction  computers are
based on a demand-driven mechanism which initiates an operation based on the demand for its results by
other computations. 

Control Flow Versus Data Flow 

Conventional  von  Neumann  computers  use  a  program  counter  (PC)  to  sequence  the  execution  of
instructions  in  a  program.  The  PC  is  sequenced  by  instruction  flow  in  a  program.  This  sequential
execution style has been called control-driven, as program flow is explicitly controlled by programmers. 

A uniprocessor computer is inherently sequential, due to use of the control driven mechanism. However,
control flow can be made parallel by using parallel language constructs or parallel compilers. In this book,
we study primarily parallel control-flow computers and their programming techniques. Until the data-
driven  or  demand-driven  mechanism  is  proven  to  be  cost-effective,  the  control-flow  approach  will
continue to dominate the computer industry. 

In a dataflow computer,  the execution of an instruction is driven by data availability instead of being
guided by a program counter. In theory, any instruction should be ready for execution whenever operands
become available. The instructions in a data-driven program arc not ordered in any way. Instead of being
stored separately in a main memory, data are directly held inside instructions. 

Computational results (data tokens) are passed directly between instructions. The data generated by an 
instruction will be duplicated into many copies and forwarded directly to all  needy instructions. Data
tokens, once consumed by an instruction, will no longer be available for reuse by other instructions.  This
data-driven  scheme  requires  no  program  counter,  and  no  control  sequencer.  However,  it  requires  
special mechanisms to detect data availability, to match data tokens with needy instructions, and to enable
the  chain  reaction  of  asynchronous  instruction  executions.  No  memory  sharing  between  instructions
results  in no side effects. 

The  global  architecture  consists  ofn  processing  elements  (PEs)  interconnected  by  an  n  x  n  muting
network. The entire system supports pipclincd dataflow operations in all n PEs. Inter-PE communications
arc done through the pipelincd routing network. 
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Within each PE, the machine provides a low-level token matching mechanism which dispatches onlythose
instructions whose input data [tokens] are already available. Each datum is tagged with the address of thc
instruction to which it belongs and the context in which thc instntction is being executed. Instructions are
stored in the program memory. Tagged tokens enter the PE through a local path. The tokens can also be
passed to other PEs through the routing network. All internal token circulation operations are pipclincd
without blocking. It is the machine’s job to match up data with the same tag to needy instructions. In so
doing,  new data  will  be produced with a  new tag indicating  the  successor  instructiontsl.  Thus,  each
instruction represents a synchronization operation. New tokens are formed and circulated along the PE
pipeline for reuse or to other PEs through the global path, which is also pipelined.

NETWORK PROPERTIES & ROUTING

The topology of an interconnection network can be either static or dynamic. Static networks are formedof
point-to-point direct connections which will not change during program execution. Dynamic networks are
implemented  with  switched  channels,  which  are  dynamically  configured  to  match  the
communicationdemand in user programs. Packet switching and routing is playing an important role in
modern multiprocessor architecture.

Node Degree and Network Diameter :The number of edges {links or channels) incident on a node is 
called the node degree d. In the case of unidirectional channels, thc number of channcls into a node is the 
in degree, and that out of a node is thc out degree. Then thc node degree is thc sum ofthe two. Thc node 
degree reflects the number of IO ports required per node, and thus the cost of a node. Therefore, the node 
degree should be kept a (small) constant, in order to reduce oost. 

 The Diameter D of a network is the maximum shortest path between any two nodes. The path length is 
measured by the number of links traversed. The network diameter indicates the maximum number of 
distinct  hops between any two nodes, thus providing a figure of communication merit for the network. 
Therefore, the network diameter should be as small as possible from a communication point of vicw.

Bisection Width: When a given network is cut into two equal halves, the minimum number of edges 
{channels} along thc cut is called thc bisection width  b. In the case of a communication network, each 
edge may correspond to a channel‘ with w bit wires. 

 To summarize the above discussions, the performance of an interconnection network is affected by the 
following factors:

Functionality: refers to how the network supports data routing, interrupt handling, synchronization, 
request-"message combining, and coherence.

Network Latency:-—This refers to the worst-ease time delay for a unit message to be transferred through
the network.

Bandwidth This refers to the maximum data transfer rate, in terms of Mbps or Gbps transmitted through 
the network 
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 Hardware Complexity'—This refers to implementation costs such as those for wires, switches, 
connectors, arbitration, and interface logic.

Scalability—This refers to the ability ofa network to be modularly expandable with a scalable 
performance with increasing machine resources.

STATIC CONNECTION NETWORKS:
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Dynamic Connection Networks
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UNIT III 

PIPELINING 

Linear PipelineProcessors

A linear pipeline processor is a cascade of processing stages which are linearlyconnected to perform a

fixed function over a stream of data  flowing from one end tothe other.  In modern computers,  linear

pipelines are applied for instruction execution,arithmetic computation, and memory-access operations 

Asynchronous & Synchronous models

A linear pipeline processor is constructed with k processing stages.External inputs(operands) are fed into

the pipeline at the first stage S1.The processed results are passed from stage Si ito  stage Si+i,The final

result  emerges from thepipeline at the last  stage Sn.Depending on the control of data flow along the

pipeline, we model linear pipelinesin two categories: asynchronous  and  Synchronous.

Asynchronous Model

As shown in the figure data flow between adjacent stages in an asynchronous pipeline is controlled by a

handshaking protocol.When stage Si is ready to transmit, it sends a ready signal to stage Si+1.  After stage

receives the incoming data, it returns an acknowledge  signal to Si. Asynchronous pipelines are useful in

designing  communication  channels  in  message-  passing  multicomputers  where  pipelined  wormhole

routing is practiced Asynchronous pipelines may have a variable throughput rate.Different amounts of

delay may be experienced in different stages.

Synchronous Model  :Synchronous pipelines are illustrated in Fig. Clocked latches are used to interface

between stages. The latches are made with master-slaveflip-flops, which can isolate inputs from outputs.

Upon the arrival of a clock pulse All latches transfer data to the next stage simultaneously.The pipeline

stages  are   combinational  logic  circuits.  It  is  desired  to  have  approximately  equal  delays  in  all

stages.These  delays  determine  the  clock  period  and  thus  thespeed  of  the  pipeline.  Unless  otherwise

specified,  only  synchronous  pipelines  are  studied.The  utilization  pattern  of  successive  stages  in  a

synchronous pipeline is specified by a reservation table. 
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For a linear pipeline, the utilization follows the diagonal streamline pattern shown in Fig. .This table is

essentially  a  space-time  diagram  depicting  theprecedence  relationship  in  using  the  pipeline  stages.

Successive tasks or operations are initiated one per cycle to enter the pipeline.Oncethe pipeline is filled

up, one result emerges from the pipeline for each additional cycle.This throughput is sustained only if the

successive tasks are independent of each other.

Clocking and Timing Control. 

The clock cycle  of a pipeline is determined below. Let T* be the time delay of thecircuitry in stage Si and

d  the time delay of a latch, as shown in Fig.  

Clock Cycle and Throughput :Denote the  maximum stage delay as Tm ,and we canwrite T as T = 

max{Ti} + d   =Tm+d

At the rising edge of the clock pulse, the data is latched to the master flip-flops of each latch register.The

clock pulse has a width equal to d. In general, T m »d for one to two orders of magnitude. This implies

that the maximum stage delay Tm dominates theclock period.The pipeline frequency is defined as the

inverse of the clock period
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If one result is expected to come out of the pipeline per cycle, f  represents the maximum throughput of

the  pipeline.  Depending  on  the  initiation  rate  of  successive  tasks  enteringthe  pipeline,  the  actual

throughput of the pipeline may be lower than f.This is becausemore than one clock cycle has elapsed

between successive task initiations

Clock  Skewing  : Ideally,  we  expect  the  clock  pulses  to  arrive  at  all  stages  (latches)at  the  same

time.However, due to a problem known  as  clock skewing the same clock pulse may arrive at different

stages with a time offset of s. 

Let tmax be the time delayof the longest logic path within a stage and tm in that of the shortest logic path 

within a stage.

To avoid a race in two successive stages, we must choose Tm > tmax + s and d < tmn — s. These 

constraints translate into the following bounds on the clock periodwhen clock skew takes effect:  d + tmax

+s <= T<= Tm+tmin-s  Tn the ideal case s  = 0, tmax = Tm , and tmin = d. Thus, we have T=Tm+ d

Speedup, Throughput & Efficiency of Pipeline: Speedup is defined as  

Speedup =              Time taken for a given computation by a non-pipelined functional unit

          Time taken for the same computation by a pipelined version

Assume a function of k stages of equal  complexity which takes the same amount  of time T. Non-

pipelined function will take kT time  for one input.   Then Speedup = nkT/(k+n-1)T  =  nk/ (k+n-1) 

Efficiency:It is an indicator of how efficiently  the resources of the pipeline are  used.  If a stage is 

available during a clock  period, then its availability becomes  the unit of resource. Efficiency can be 

defined as

No. of used stage time units = nk  there are n inputs and each input uses k  stages. 

Total no. of stage-time units available  = k[ k + (n-1)] 

It is the product of no. of stages in the  pipeline (k) and no. of clock periods  taken for computation(k+(n-

1)).

No. of used stage time units = nk there are n inputs and each input uses k  stages.  Total no. of stage-time 

units available  = k[ k + (n-1)]  It is the product of no. of stages in the  pipeline (k) and no. 

of clock periods  taken for computation(k+(n-1)).
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Throughput:It is the average number of results  computed per unit time. For n inputs, a k-staged pipeline 

takes        [k+(n-1)]T time units Then, Throughput  = n / [k+n-1] T = nf /  [k+n-1]  where f is the 

clock frequency

NON LINEAR PIPELINE PROCESSORS:

A dynamic pipeline can be reconfigured to perform variable functions at different times.The traditional

linear pipelines are static pipelines because they are  used toperform fixed functions.A dynamic pipeline

allows feedforward and feedback connections in addition to the streamline connections.

Reservation and Latency analysis:In a static pipeline,  it  is easy to partition a given function into a

sequence of linearly ordered subfunctions. However, function partitioning in a dynamic pipeline becomes

quite  involved  because  the  pipeline  stages  are  interconnected  with  loops  inaddition  to  streamline

connections.A multifunction dynamic pipeline is shown in Fig.  This pipeline has three stages. Besides the

streamline connections from S1 to S2 and from S2 to S3, there is a feedforward connection from S1 to S3

and  two  feedback  connections  from S3  to  S2  and  from S3  to  S1.These  feedforward  and  feedback

connections  make  the  scheduling  of  successive  events  into  the  pipeline  a  nontrivial  task.With  these

connections, the output of the pipeline is not necessarily from the last stage.In fact, following different

dataflow patterns, one can use the same pipeline to evaluate different functions

Reservation Tables : The reservation  table for a  static linear pipeline is trivial in the sense that data flow

follows  a linear streamline. The reservation table for a dynamicpipeline becomes more interesting 

because a nonlinear pattern is followed.Given a pipeline configuration, multiple reservation tables can be 

generated for the evaluation of different functions.Two reservation tables are given in Fig, corresponding 

to a function X and a function Y, respectively.
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Each function evaluation is specified by one reservation table.A static pipeline is specified by a single

reservation  table  .A  dynamic  pipelinemay  be  specified  by  more  than  one  reservation  table.Each

reservation  table  displays  the  time-space  flow  of  data  through  the  pipeline  forone  function

evaluation.Different functions may follow different paths on  the reservation table.

A number of pipeline configurations may be represented by the same reservation table.There is a many-to-

many mapping between various pipeline configurations and different reservation tables.The number of 

columns in a reservation table is called the evaluation time of a given function.

Latency Analysis  The number of time units (clock cycles) between two initiations of a pipeline is the

latency  betweenthem.Latency  values  must  be  non  negative  integers.A latency  of  k  means  that  two

initiations are separated by k clock cycles. Any attempt by two or more initiations to use the same pipeline

stage at the same time will cause a collision. A collision implies resource conflicts between two initiations

in  the  pipeline.  Therefore,  all  collisions  must  be  avoided  in  scheduling  a  sequence  of  pipeline

initiations.Some latencies will cause collisions, and some will not. Latencies that cause  collisions are

called forbidden latencies

COLLISION  FREE  SCHEDULING:When  scheduling  events  in  a  nonlinear  pipeline,  the  main
objective is to obtain the shortest average latency between initiations witliout causing collisions. In what
follows, we present a systematic method for achieving  such collision-free scheduling.

 Collision Vector: By examining the reservation table, one can distinguish the set of permissible latencies
from the set  of forbidden latencies.  For a  reservation table  with n columns,  the maximum forbidden
latency in m<=n-1. The permisable  latency p should be as small as possible. The choice is made in the
range 1 <= p <= m-1. A permissible latency of p = I corresponds to the ideal case. In theory, a latency of 1
can always be achieved in a static pipeline which follows a linear (diagonal or streamlined) reservation
table.
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UNIT IV   INSTRUCTION PIPELINE DESIGN
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Cache Coherence Problem

In a memory hierarchy for a multiprocessor system, data inconsistency may oecur between adjacent levels
or within the same level. For example, the cache and main memory may contain inconsistent copies of
thesame data object.  Multiple caches may possess tlitierent copies ofthe same memory block because
multiple processors operate asynchronously and independently.

Caches  in  a  multiprocessing  cnvironrnccnt  introduce  thc  cache  coherence  problem.When  multiple
processors maintain locally cached copies of a unique shared-memory location, any local modification of
the location can result in a globally inconsistent view of memory. Cache coherence schemes prevent this
problem by maintaining a uniform state for each cached block of data. Cache inconsistencies caused by
data sharing, process migration, or I/O are explained below.

 Inconsistency in Data sharing: Sharing The cache inconsistency problem occurs only when multiple
private caches are used. ln general, three sources of thc problem are identified: sharing of writable data,
process migration and I/O activity.

Consider a multiprocessor with two processors, each using a private cache and both sharing the main
memory. Let X be a shared data element which has been referenced by both processors. Before update,
the three copies of X are consistent.

If processor P. writes new data X’ into the cache, the same copy will be written immediately into the
shared memory under a write through policy. 

In this case. inconsistency occurs between the two copies {X and X') in the two caches On the other hand,
inconsistency may also occur when a write back policy is used, as shown on the right The main memory
will be eventually updated when the modified data in the cache are replaced or invalidated

Process Migration and I/O:

The figure shows the shows the occureence of inconsistency after a process containing a shared variable
X migrates from processor 1 to processor 2 using the write-back cache on the right. In the middle, a
process migrates from processor 2 to processor1 when using write-through caches.
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In both cases, inconsistency appears between the two cache copies, labeled Xand X’. Special precautions
must   be  exercised  to  avoid  such  inconsistencies.  A coherence  protocol  must  be  established  before
processes can safely rnigrate from one processor to another.

Protocol Approaches

Many of the early commercially available multiproccssors used bus-based memory systems. A bus is a
convenient device for ensuring cache coherence because it allows all processors in the system to observe
ongoing memory transactions. If a bus transaction threatens the consistent state of a locally cached obj
ect, the cache controller can take appropriate actions to invalidate thc local copy. Protocols using this
mechanism  to  ensure  cohcrcncc  arc  called  snoopy  protocols  bccausc  each  cach-c  snoops  on  thc
transactions of other caches.

On the other hand, scalable  multiprocessor systems interconnect  processors using short  point-to-point
links in direct or multistage networks. Unlike the situation in buses, the bandwidth of these networks
increases as more processors are added to the system. However, such networks do not have a convenient
snooping mechanism and do not provide an cfficicnt broadcast capability.  In such systems, thc cache
coherence problem can be solved using some variant of directory schemes.

SNOOPY PROTOCOLS
In using private caches associated with processors tied to a common bus, two approaches have been

practiced for maintaining cache consist-ecncy:write invalidate and write update policies.Essentially, the

write-invalidate policy will invalidate all remote copies when a local cache block is updated. The write

update policy  will broadcast the new data block to all caches containing a copy of the block.
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Using a write-in validate protocol, the processor Pl modifies (writes) its cache from X to X’, and all other
copies are invalidated via the bus (denoted I in Fig. ).  invalidated blocks are sometimes called dirty,
meaning they should not be used. 

The write update protocol (Fig.c) demands the new block content .X’ be broadcast to all cache copies via
the bus. The memory copy is also updated if write-through caches are used. In using write-back caches,
the memory copy is updated later at block replacement time.

Write  Through  Caches:  The  states  of  a  cache  block  copy  change  with  respect  to  read,write  ,  and
replacement  operations in thc cache shows the state transitions for two basic write-invalidate snoopy
protocols  developed  for  write-through  and  write-back  caches,  respectively.  A block  copy  of  a  write
through cache i attached to processor ii can assume one of two possible cache states: valid or invalid.

A remote processor is denoted j, where j # i. For each ofthe two cache states, sis possible events may take
place. Note that all cache copies of the same block use the same transition graph in making state changes.
In a miid valid state , all processors can read R(i), R(j) safely. Local processor i can also write W(i)
safely in a valid state. The invalid state corresponds to the case of thc block either being invalidated or
being replaced (Z(i) or Z(j').

Write Back Caches:  The valid‘ state of a write-back cache can be further split into two cache states.
Labeled RW  and R0  as shown in Fig.. Thc INV (invalidated or not-in-cache} cache state is equivalent to
the  rm-ora:  state  mentioned  before.  This  three-state  coherence  scheme corresponds  to  an  ownership
protocol.

When the memory owns a block, caches can contain only the RO copies of the block. In other words,
multiple copies may exist in the RD state and every processor having a copy (called a keeper of the copy)
can read R(i),R(j) safely.
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The Inv state is entered whenever a remote processor writes W(j)  its local copy or the local processor
replaces Z(i)  its own block copy. The RW state corresponds to only one cache copy existing in the entire
system owned by the local processor i. Read (R(i) and write W(i)) can be safely performed in the RW
state. From either the R0 state or the INV state, the cache block becomes uniquely owned when a local
write W(i) takes place.
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UNIT V : DIRECTORY BASED PROTOCOLS
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